JTG E51-2009

公路工程无机结合料 稳定材料试验规程

Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering

2009-10-15 发布

2010-01-01 实施

中华人民共和国行业标准

公路工程无机结合料稳定材料试验规程

Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering

JTG E51-2009

主编单位:交通部公路科学研究院

批准部门:中华人民共和国交通运输部

实施日期:2010年01月01日

人民交通出版社

2009・北京

图书在版编目(CIP)数据

公路工程无机结合料稳定材料试验规程:JTG E51—2009/ 交通部公路科学研究院主编.北京:人民交通出版社,2009.12 ISBN 978-7-114-08046-3

I. 公… II. 交… III. 道路工程 - 建筑材料: 无机材料 - 材料试验 - 规程 - 中国 IV. U414. 1 - 65 中国版本图书馆 CIP 数据核字(2009)第 199351 号

中华人民共和国行业标准 公路工程无机结合料稳定材料试验规程 JTG E51—2009

交通部公路科学研究院 主编 人民交通出版社出版发行 (100011 北京市朝阳区安定门外外馆斜街 3 号) 各地新华书店经销 北京交通印务实业公司印刷 开本:880×1230 1/16 印张:10.75 字数:220千 2009年12月 第1版 2009年12月 第1次印刷 印数:00001—20000册 定价:48.00元 ISBN 978-7-114-08046-3

中华人民共和国交通运输部

公 告

2009 年第 42 号

关于公布《公路工程无机结合料稳定材料试验规程》 (JTG E51—2009)的公告

现公布《公路工程无机结合料稳定材料试验规程》(JTG E51—2009),作为公路工程行业标准,自2010年1月1日起施行,原《公路工程无机结合料稳定材料试验规程》(JTJ 057—94)同时废止。

该规程的管理权和解释权归交通运输部,日常解释和管理工作由主编单位交通部公路科学研究院负责。请各有关单位在实践中注意总结经验,及时将发现的问题和修改意见函告交通部公路科学研究院(地址:北京市海淀区西土城路8号,邮政编码:100088),以便修订时研用。

特此公告。

中华人民共和国交通运输部

二〇〇九年十月十五日

主题词:公路 规程 公告

交通运输部办公厅

2009年10月16日印发

前 言

《公路工程无机结合料稳定材料试验规程》(JTJ 057—1994)(以下简称原规程)自发布实施以来,对指导我国公路路面基层材料的试验和施工现场基层质量检测,保证路面质量起到了很大的作用。但随着公路建设水平的进步,半刚性基层的原材料要求和施工工艺水平全面提高,相关试验方法随之改进,原规程需作进一步修订和完善。为此,交通部于2006年下达了原规程的修订任务,委托交通部公路科学研究院具体负责修订工作。

修订组开展了全面的调研和相关试验工作,在参考国内外相关标准、规范及其他技术资料并广泛征求有关单位意见的基础上,经过反复修改,完成了修订工作。

修订后的规程由5章(35个试验方法)、2个附录构成,主要修订内容有:

- 1. 本规程统一采用方孔筛;明确了无机结合料稳定材料粗、中、细粒土的分界。
- 2. 为保证试验结果的可靠性,提高了相关试验的精度要求。
- 3. 修订了含水量试验方法、水泥或石灰稳定材料中水泥或石灰剂量测定方法(EDTA 滴定法)及石灰稳定材料中石灰剂量测定方法(直读式测钙仪法)3 个试验方法。
 - 4. 增加了石灰细度、石灰未消化残渣含量测定等22个试验方法。

本规程由交通部公路科学研究院负责日常解释,希望各单位在使用中注意总结经验,及时将意见和建议函告交通部公路科学研究院(地址:北京市海淀区西土城路8号,邮政编码:100088,E-mail:xd.wang@rioh.cn),以便修订时研用。

主编单位:交通部公路科学研究院

参编单位:长安大学

主要起草人:王旭东 李美江 沙爱民 汪水银 周兴业 沈国辉 路凯冀

目 录

1			
2			
	11 2		
3	原材料试验 ·		
	T 0801—2009	含水量试验方法(烘干法)	5
	T 0802—1994	含水量试验方法(砂浴法)	
	T 0803—1994	含水量试验方法(酒精法)	12
	T 0809—2009	水泥或石灰稳定材料中水泥或石灰剂量测定方法	
		(EDTA 滴定法) ······ 1	14
	T 0810—2009	石灰稳定材料中石灰剂量测定方法(直读式测钙仪法)2	20
	T 0811—1994	石灰有效氧化钙测定方法 2	
	T 0812—1994	石灰氧化镁测定方法	
	T 0813—1994	石灰有效氧化钙和氧化镁简易测定方法 3	36
	T 0814—2009	石灰细度试验方法	40
	T 0815—2009	石灰未消化残渣含量测定方法	
	T 0816—2009	粉煤灰二氧化硅、氧化铁和氧化铝含量测定方法4	14
	T 0817—2009	粉煤灰烧失量测定方法	
	T 0818—2009	粉煤灰细度试验方法	
	T 0819—2009	石灰、粉煤灰密度测定方法 ······	
	T 0820—2009	粉煤灰比表面积测定方法(勃氏法) 6	50
4	无机结合料稳	定材料的取样、成型和养生试验	57
	T 0841—2009	无机结合料稳定材料取样方法 6	57
	T 0804—1994	无机结合料稳定材料击实试验方法 6	58
	T 0842—2009	无机结合料稳定材料振动压实试验方法	76
	T 0843—2009	无机结合料稳定材料试件制作方法(圆柱形) 8	32
	T 0844—2009	无机结合料稳定材料试件制作方法(梁式) {	37
	T 0845—2009	无机结合料稳定材料养生试验方法	92
5	无机结合料稳	定材料的物理、力学试验	96
	T 0805—1994	无机结合料稳定材料无侧限抗压强度试验方法	96

	T 0806	—1994	无机结合料稳定材料间接抗拉强度试验方法(劈裂试验)	101
	T 0851	-2009	无机结合料稳定材料弯拉强度试验方法	104
	T 0808	—1994	无机结合料稳定材料室内抗压回弹模量试验方法(顶面法)	108
	T 0807	—1994	无机结合料稳定材料室内抗压回弹模量试验方法(承载板法)	113
	T 0852	2009	无机结合料稳定材料劈裂回弹模量试验方法	116
	T 0853	2009	无机结合料稳定材料弯拉回弹模量试验方法	121
	T 0854	-2009	无机结合料稳定材料干缩试验方法	125
	T 0855	-2009	无机结合料稳定材料温缩试验方法	129
	T 0856	-2009	无机结合料稳定材料疲劳试验方法	134
	T 0857	2009	无机结合料稳定材料室内动态抗压回弹模量试验方法	141
	T 0858	2009	无机结合料稳定材料冻融试验方法	146
	T 0859	-2009	无机结合料稳定材料渗水试验方法	149
	T 0860	-2009	无机结合料稳定材料抗冲刷试验方法	152
3	対录 A	正态样和	本异常值的判断及处理方法——狄克逊准则······	156
ß	対录 B	一元线性	生回归分析	158

1 总 则

- **1.0.1** 为适应我国公路建设需要,保证公路工程无机结合料稳定材料质量,规范各类无机结合料稳定材料试验方法,特制定本规程。
- **1.0.2** 本规程适用于水泥、石灰、粉煤灰等工业废渣及其综合稳定材料的物理、力学试验,以及石灰、水泥、粉煤灰等原材料的试验。
- **1.0.3** 本规程使用的仪器设备,均应经相应的计量部门或检测机构定期检定合格, 并满足相应的量程和精度要求。
 - 1.0.4 本规程采用国家法定标准计量单位制。
- **1.0.5** 公路工程无机结合料稳定材料试验除应符合本规程要求外,尚应符合国家和行业现行相关标准及规范的规定。

2 术语、符号

2.1 术 语

2.1.1 公称最大粒径 nominal maximus size 通过率为 90% ~ 100% 的最小标准筛孔尺寸。

2.1.2 细粒土 fine-grained soil

颗粒最大粒径不大于4.75mm,公称最大粒径不大于2.36mm 的土,包括各种黏质土、粉质土、砂和石屑等。

2.1.3 中粒土 medium grained soil

颗粒最大粒径不大于 26.5 mm, 公称最大粒径大于 2.36 mm 且不大于 19 mm 的土或集料, 包括砂砾土、碎石土、级配砂砾、级配碎石等。

2.1.4 粗粒土 coarse-grained soil

颗粒最大粒径不大于 53mm, 公称最大粒径大于 19mm 且不大于 37.5mm 的土或集料,包括砂砾土、碎石土、级配砂砾、级配碎石等。

2.1.5 集料 aggregate

在混合料中起骨架和填充作用的粒料,包括碎石、砾石、机制砂、石屑、砂等。

2.1.6 无机结合料 inorganic binders

主要指水泥、石灰、粉煤灰及其他工业废渣。

2.1.7 水泥稳定材料 cement stabilized material

在经过粉碎的或原来松散的材料中,掺入足量的水泥和水,经拌和得到的混合料,在压实和养生后,当其抗压强度符合规定的要求时,称为水泥稳定材料。

2.1.8 石灰稳定材料 lime-stabilized material

在粉碎的或原来松散的材料(包括各种粗、中、细粒土)中,掺入足量的石灰和水,经拌和得到的混合料,在压实和养生后,当其抗压强度符合规定的要求时,称为石灰稳定材料。

2.1.9 综合稳定材料 composite stabilized material

两种或两种以上无机结合材料稳定的强度符合要求的混合料。例如石灰粉煤灰级配碎石和石灰粉煤灰级配砂砾,简称二灰碎石和二灰砂砾。

2.1.10 最佳含水量和最大干密度 the optimum water content and the maximum dry density

无机结合料稳定材料进行击实或振实试验时,在含水量——干密度坐标系上绘出各个对应点,连成圆滑的曲线,曲线的峰值点对应的含水量和干密度即为最佳含水量和最大干密度。表明在最佳含水量及最佳压实效果的状态下稳定材料所能达到的最大干密度。

2.1.11 动态抗压回弹模量 dynamic compression modulus of resilience

在圆柱形试件上,采用具有一定周期和波形的动态压力荷载,其应力的模(振幅)与材料响应的应变的模(振幅)的比值,称为该应力(荷载)条件下的动态抗压回弹模量。

- **2.1.12** 抗压强度 compressive strength 试件单位面积上所能承受的最大压力。
- **2.1.13** 弯拉强度 flexural-tensile strength 试件所能承受的抵抗弯拉的最大弯拉应力。
- **2.1.14** 抗压回弹模量 compression modulus of resilience 试件轴向承受一定压力时产生单位变形所需的应力。
- 2.1.15 劈裂强度 splitting strength

通过加载条加静载于圆柱形试件的轴向,试件按一定的变形速率加载,通过施加的压荷载与垂直、水平向变形的测量,计算的试件中心点的最大拉应力即为劈裂强度,也称间接拉伸强度(indirect tension strength)。

2.1.16 劈裂回弹模量 splitting modulus of resilience

通过加载条加静载于圆柱形试件的轴向,试件按一定的变形速率加载,通过施加的压荷载与垂直、水平向变形的测量,计算的试件中心点的劲度模量即为劈裂回弹模量。

- **2.1.17** 弯拉模量 flexural-tensile modulus 试件承受一定弯拉应力时产生单位变形所需的应力。
- 2.1.18 干缩性 drying shrinkage

在一定环境下,无机结合料稳定材料失水后尺寸的收缩性能。

2.1.19 温缩性 temperature shrinkage

在环境温度降低时,无机结合料稳定材料降温后尺寸收缩的性能。

2.1.20 重复性试验 repeatability test

指测量程序相同、观测者相同、在相同条件下使用相同的测量仪器、在相同地点、短时间内重复进行的试验。本规程中的平行试验推荐采用重复性试验。

2.2 符 号

	符号	
抗压强度	$R_{\rm c}$	MPa
劈裂强度(间接抗拉强度)	R_{i}	MPa
弯拉强度	R _s	MPa
动态抗压回弹模量	$E_{ m dc}$	MPa
 抗压回弹模量	E _c	MPa
劈裂回弹模量	E_{i}	MPa
弯拉回弹模量	E _s	MPa
变异系数	C _v	%
含水量	w	%
	$ ho_{\scriptscriptstyle{w}}$	g/cm ³
	$ ho_{ m d}$	g/cm ³
———————————— 干缩系数	$lpha_{ m d}$	%
温缩系数	α_{ι}	%
抗冻强度损失	BDR	%
渗水系数	$C_{\sf w}$	%

3 原材料试验

T 0801—2009 含水量试验方法(烘干法)

- 1 适用范围
 - 本方法适用于测定水泥、石灰、粉煤灰及无机结合料稳定材料的含水量。
- 2 仪器设备
 - 2.1 水泥、粉煤灰、生石灰粉、消石灰和消石灰粉、稳定细粒土
 - **2.1.1** 烘箱:量程不小于110℃,控温精度为±2℃。
 - 2.1.2 铝盒:直径约50mm,高25~30mm。
 - 2.1.3 电子天平: 量程不小于 150g, 感量 0.01g。
 - **2.1.4** 干燥器:直径 200~250mm,并用硅胶做干燥剂^①。 注①:用指示硅胶做干燥剂,而不用氯化钙。因为许多黏土烘干后能从氯化钙中吸收水分。
 - 2.2 稳定中粒土
 - 2.2.1 烘箱:同2.1.1。
 - 2.2.2 铝盒:能放样品 500g 以上。
 - 2.2.3 电子天平: 量程不小于 1 000g, 感量 0.1g。
 - 2.2.4 干燥器:同2.1.4。
 - 2.3 稳定粗粒土

- 2.3.1 烘箱:同2.1.1。
- 2.3.2 大铝盒:能放样品 2 000g 以上。
- 2.3.3 电子天平:量程不小于3000g,感量0.1g。
- 2.3.4 干燥器:同2.1.4。
- 3 试验步骤
 - 3.1 水泥、粉煤灰、生石灰粉、消石灰和消石灰粉、稳定细粒土
- **3.1.1** 取清洁干燥的铝盒,称其质量 m_1 ,并精确至 0.01g;取约 50g 试样(对生石灰粉、消石灰和消石灰粉取 100g),经手工木锤粉碎后松放在铝盒中,应尽快盖上盒盖,尽量避免水分散失,称其质量 m_2 ,并精确至 0.01g。
- 3.1.2 对于水泥稳定材料,将烘箱温度调到 110℃;对于其他材料^①,将烘箱调到 105℃。待烘箱达到设定的温度后,取下盒盖,并将盛有试样的铝盒放在盒盖上,然后一起放入烘箱中进行烘干,需要的烘干时间随试样种类和试样数量而改变。当冷却试样连续两次称量的差(每次间隔 4h) 不超过原试样质量的 0.1% ^②时,即认为样品已烘干。
 - 3.1.3 烘干后,从烘箱中取出盛有试样的铝盒,并将盒盖盖紧。
- **3.1.4** 将盛有烘干试样的铝盒放入干燥器内冷却^③。然后称铝盒和烘干试样的质量 m_3 ,并精确至 0.01g。
- 注①:某些含有石膏的土在烘干时会损失其结晶水,用此方法测定对其含水量有影响。每1%石膏对含水量的影响约为0.2%。如果土中有石膏,则试样应该在不超过80℃的温度下烘干,并可能要烘更长的时间。
- 注②:对于大多数土,通常烘干 16~24h 就足够了。但是,某些土或试样数量过多或试样很潮湿,可能需要烘更长的时间。烘干的时间也与烘箱内试样的总质量、烘箱的尺寸及其通风系统的效率有关。
 - 注③:如铝盒的盖密闭,而且试样在称量前放置时间较短,则可以不放在干燥器中冷却。

3.2 稳定中粒土

- **3.2.1** 取清洁干燥的铝盒,称其质量 m_1 ,并精确至 0.1g。取 500g 试样(至少 300g) 经粉碎后松放在铝盒中,盖上盒盖,称其质量 m_2 ,并精确至 0.1g。
- 3.2.2 对于水泥稳定材料,将烘箱温度调到 110℃;对于其他材料,将烘箱调到 105℃。待烘箱达到设定的温度后,取下盒盖,并将盛有试样的铝盒放在盒盖上,然后一起放入烘箱中进行烘干,需要的烘干时间随土类和试样数量而改变。当冷却试样连续两次

称量的差(每次间隔4h)不超过原试样质量的0.1%时,即认为样品已烘干。

- 3.2.3 烘干后,从烘箱中取出盛有试样的铝盒,并将盒盖盖紧,放置冷却。
- **3.2.4** 称铝盒和烘干试样的质量 m_3 ,并精确至 0.1 g_8

3.3 稳定粗粒土

- **3.3.1** 取清洁干燥的铝盒,称其质量 m_1 ,并精确至 0.1g。取 2 000g 试样经粉碎后 松放在铝盒中,盖上盒盖,称其质量 m_2 ,并精确至 0.1g。
- 3.3.2 对于水泥稳定材料,将烘箱温度调到 110℃;对于其他材料,将烘箱调到 105℃。待烘箱达到设定的温度后,取下盒盖,并将盛有试样的铝盒放在盒盖上,然后一起放入烘箱中进行烘干,需要的烘干时间随土类和试样数量而改变。当冷却试样连续两次称量的差(每次间隔 4h) 不超过原试样质量的 0.1% 时,即认为样品已烘干。
 - 3.3.3 烘干后,从烘箱中取出盛有试样的铝盒,并将盒盖盖紧,放置冷却。
 - **3.3.4** 称铝盒和烘干试样的质量 m_3 ,并精确至 $0.1g_8$

4 计算

用式(T0801-1)计算无机结合料稳定材料的含水量。

$$w = \frac{m_2 - m_3}{m_3 - m_1} \times 100 \tag{T 0801-1}$$

式中:w——无机结合料稳定材料的含水量(%);

 m_1 — 铝盒的质量(g);

 m_2 ——铝盒和湿稳定材料的合计质量(g);

m3——铝盒和干稳定材料的合计质量(g)。

5 结果整理

本试验应进行两次平行测定,取算术平均值,保留至小数点后两位。允许重复性误差 应符合表 T 0801-1 的要求。

 含水量(%)
 允许误差(%)
 含水量(%)
 允许误差(%)

 ≤7
 ≤0.5
 >40
 ≤2

 >7,≤40
 ≤1

表 T 0801-1 含水量测定的允许重复性误差值

6 记录

本试验的记录格式见表 T 0801-2。

表 T 0801-2 无机结合料稳定材料含水量测定记录表(烘干法)

工程名称	试 验 者
试样位置	校 核 者
试样编号	试验日期
试验方法	
盒号	
盒的质量 m ₁ (g)	
盒+湿试样的质量 m ₂ (g)	
盒 + 干试样的质量 m ₃ (g)	
水的质量 m ₂ - m ₃ (g)	
干试样的质量 m ₃ - m ₁ (g)	
含水量(%)	

条文说明

本方法源自原规程 T 0801—1994。

水泥与水拌和就要发生水化作用,在较高温度下水化作用发生得较快。如先将混合料放入烘箱中,再启动烘箱升温,则在升温过程中水泥与水的水化作用发生得较快。而烘干法又不能除去已与水泥发生水化作用的水,这样得出的含水量往往偏小。所以应提前将烘箱升温到 110° C,使含水泥的混合料一开始就能在 110° C 的环境下进行烘干。

由于稳定中粒土和稳定粗粒土中大部分是砂粒以上的颗粒,为提高测得含水量的准确度,所取样品数量较大,分别为500g和2000g。在没有大铝盒时,也可以将这些样品分成两盒进行烘干。试验结果应满足平行试验的误差要求,然后取其平均值。

由于当前在试验室中使用广泛的称量设备的精度较高,为了提高试验过程中的测试精度,此次修订将原规程中针对台秤的措施予以删除,对称量要求在 4 000g 以内的,统一采用感量为 0.01g 的电子天平;对称量要求在 4 000g 以上的,统一采用感量为 0.1g 的电子天平。考虑到当前大量试验室还沿用原规程的仪器,因此对用于中粒土和粗粒土测试的天平感量放宽到 0.1g,但鼓励相关单位采用相对高精度的天平测量,以减少试验误差。

对于有机质土,尽量采用烘干法,并酌情降低烘箱温度。

T 0802—1994 含水量试验方法(砂浴法)

1 适用范围

本方法适用于在工地快速测定无机结合料稳定材料的含水量。当土中含有大量石

膏、碳酸钙或有机质时,不应使用本方法。

2 仪器设备

- 2.1 稳定细粒土
 - 2.1.1 铝盒:直径约50mm,高25~30mm。
 - 2.1.2 电子天平:量程不小于 150g,感量 0.01g。
- **2.1.3** 砂浴:直径约 200 mm、深至少 25 mm 的砂浴 1 个,其中放有清洁的砂。也可以使用更大的砂浴,一次烘干几个试样。
 - 2.1.4 加热砂浴的设备:1 套。
 - 2.1.5 调土刀:刀片长 100mm,宽 20mm。
 - 2.2 稳定中粒土
 - 2.2.1 天平:量程不小于1000g,感量0.1g。
 - 2.2.2 方盘:边长约 200mm、深约 50mm 的白铁皮方盘。
 - 2.2.3 砂浴:能放入方盘的砂浴1个,砂深至少25mm。
 - 2.2.4 加热砂浴的设备:1 套。
 - 2.2.5 调土刀:同2.1.5。
 - 2.2.6 长方盘:长约 200mm, 宽约 100mm。
 - 2.3 稳定粗粒土
 - **2.3.1** 天平:量程不小于3000g,感量 0.1g。
 - 2.3.2 方盘:边长约250mm,深50~70mm。
 - 2.3.3 砂浴:能放入方盘的砂浴 1 个,砂深至少 25 mm。

- 2.3.4 加热砂浴的设备:1 套。
- 2.3.5 调土刀:同2.1.5。
- 2.3.6 长方盘:长约 200mm, 宽约 100mm。

3 试验步骤

- 3.1 稳定细粒土
- **3.1.1** 取清洁干燥的铝盒,称其质量 m_1 ,并精确至 0.01g。至少取 30g 试样,经粉碎后松放在铝盒中,盖上盒盖,称其质量 m_2 ,并精确至 0.01g。
- **3.1.2** 取下盒盖,将盛有试样的铝盒放在正在加热的砂浴内,但需注意勿使砂浴温度太高^①。在加热过程中,应经常用调土刀搅拌试样,以促使水分蒸发。
- 3.1.3 当加热一段时间(通常 1h 足够^②)使试样干燥后,从砂浴中取出铝盒,盖上盒盖,并放置冷却。
 - **3.1.4** 称铝盒和烘干试样质量 m_3 , 并精确至 0.01g。
 - 注①:避免稳定材料过分加热。将一小张白纸片放在土中拌和,如纸变成焦黄色,就表示加热过分。
- 注②:烘干时间随土类、试样的数量及野外条件而变。当对某种土要做大量含水量测定时,应使用不同的干燥时间,以确定烘干所需要的最短时间。如将试样再烘 1 min 后,其质量损失不超过 0.1g(对于细粒土)、0.5g(对于粗粒土)时,即认为土已被烘干。
 - 3.2 稳定中粒土和粗粒土
- **3.2.1** 取清洁干燥的方盘,称其质量 m_1 ,并精确至 0.1g。稳定中粒土的试样至少要 300g,稳定粗粒土的试样至少要 2~000g。将试样弄碎并均匀地撒布在方盘内,称方盘和试样的合质量 m_2 ,并精确至 0.1g。
- **3.2.2** 将方盘放在正在加热的砂浴内,应注意砂浴温度不要过高。在加热过程中,应经常用调土刀搅拌试样,以促使水分蒸发。
 - 3.2.3 当加热一段时间(通常 1h 足够)后,从砂浴中取出方盘,并让其冷却。
 - **3.2.4** 当方盘冷却后,立即称方盘和烘干试样的合质量 m_3 ,并精确至 0.1g。

4 计算

用式(T0802-1)计算无机结合料稳定材料的含水量。

$$w = \frac{m_2 - m_1}{m_3 - m_1} \times 100 \tag{T 0802-1}$$

式中:w---无机结合料稳定材料的含水量(%);

 m_1 — 铝盒或方盘的质量(g); m_2 — 铝盒或方盘与湿稳定材料的合质量(g);

m₃——铝盒或方盘与干稳定材料的合质量(g)。

5 结果整理

本试验应进行两次平行测定,取算术平均值,保留至小数点后两位。允许重复性误差 应符合表 T 0802-1 的要求。

表 T 0802-1 含水量测定的允许重复性误差值

含水量(%)	允许误差(%)	含水量(%)	允许误差(%)
€7	≤0.5	>40	€2
>7, ≤40	≤1		

6 记录

工程名称_

本试验的记录格式见表 T 0802-2。

表 T 0802-2 无机结合料稳定材料含水量测定记录表(砂浴法)

试验者_

试样位置_		 校 核 者	 	
试样编号_		 试验日期	 	
试验方法				
盒	号			
盒的质	ī量 m₁(g)			
盒 +湿试样	的质量 m ₂ (g)			
盒 + 干试样	的质量 m ₃ (g)			
水的质量	$m_2 - m_3$ (g)			
干试样的质	$(\stackrel{\cdot}{} \underline{} m_3 - m_1(g))$			
含水	量(%)			

条文说明

砂浴法测定含水量的精度较差,为现场施工过程中快速测定提供参考数据,正式数据应以烘干法 为准。

T 0803—1994 含水量试验方法(酒精法)

1 目的和适用范围

本方法适用于在工地快速测定无机结合料稳定材料的含水量。当土中含有大量黏土、石膏、石灰质或有机质时,不应使用本方法。

2 仪器设备

- **2.1** 蒸发皿:硅石蒸发皿。对于细粒土,采用直径 100mm;对于中粒土,采用直径 150mm;对于粗粒土,可用方盘。
 - 2.2 刮土刀:长100mm,宽20mm。
 - 2.3 搅拌棒:长200~250mm,直径约3mm。
 - 2.4 天平:量程不小于 150g,感量 0.01g。
 - 2.5 天平:量程不小于1000g,感量0.1g。
 - 2.6 天平:量程不小于3000g,感量0.1g。
 - 2.7 酒精:乙醇体积分数大于或等于95%。

3 试验步骤

- **3.1** 将蒸发皿洗净、烘干,称其质量 m, 并精确至 0.01g。
- **3.2** 对于细粒土,取试样 30g 左右放在蒸发皿内;对于中粒土,取试样 300g 左右放在蒸发皿内;对粗粒土,取 2000g 放在蒸发皿或方盘中。称蒸发皿和试样的合质量 m_2 ,对细粒土精确至 0.01g,对中粒土、粗粒土精确至 0.1g。
- 3.3 对于细粒土,取约 25mL 酒精;对于中粒土,取约 200mL 酒精;对于粗粒土,取约 1500mL酒精。将酒精倒在试样上,使其浸没试样。用刮土刀搅拌酒精和土样,并将大土块破碎。
 - 3.4 将蒸发皿放在不怕热的表面上,点火燃烧。

- 3.5 在酒精燃烧过程中,用搅拌棒经常搅拌试样,但应注意勿使试样损失。对细粒土,至少燃烧3遍;对中、粗粒土,一般需烧2~3遍。
- **3.6** 酒精燃烧完后,使蒸发皿冷却。当蒸发皿冷却至室温时,称蒸发皿和试样的合质量 m_3 ,细粒土精确至 0.01g,中、粗粒土精确至 0.1g。

4 计算

用式(T0803-1)计算无机结合料稳定材料的含水量。

$$w = \frac{m_2 - m_3}{m_3 - m_1} \times 100 \tag{T 0803-1}$$

式中:w——无机结合料稳定材料的含水量(%);

 m_1 ——蒸发皿的质量(g);

 m_2 ——蒸发皿和湿稳定材料的合质量(g);

 m_3 ——蒸发皿和干稳定材料的合质量(g)。

5 结果整理

本试验应进行两次平行测定,取算术平均值,保留至小数点后两位。允许重复性误差 应符合表 T 0803-1 的要求。

表 T 0803-1 含水量测定的允许重复性误差值

含水量(%)	允许误差(%)	含水量(%)	允许误差(%)
≤7	≤0.5	>40	€2
>7, ≤40	≤1		

6 记录

本试验的记录格式见表 T 0803-2。

表 T 0803-2 无机结合料稳定材料含水量测定记录表(酒精法)

工程名称	试 验 者
试样位置	校 核 者
试样编号	试验日期
试验方法	

盒号	
盒的质量 m ₁ (g)	
盒 +湿试样的质量 m ₂ (g)	
盒 + 干试样的质量 m ₃ (g)	
水的质量 m ₂ - m ₃ (g)	
于试样的质量 m ₃ - m ₁ (g)	
含水量(%)	

条文说明

酒精法测定含水量的精度较差。禁止使用固体酒精。酒精法适用于施工现场即时测定混合料的含水量,为施工质量控制提供参考数据。由于现在工地都有试验室,因此应尽量采用烘干法。当酒精法与烘干法有严重数字不符时,应重做试验,查明原因;若仍不符合,则以烘干法试验数据为准。

T 0809—2009 水泥或石灰稳定材料中水泥或石灰剂量测定方法 (EDTA 滴定法)

1 适用范围

- **1.1** 本方法适用于在工地快速测定水泥和石灰稳定材料中水泥和石灰的剂量,并可用于检查现场拌和和摊铺的均匀性。
- **1.2** 本办法适用于在水泥终凝之前的水泥含量测定,现场土样的石灰剂量应在路拌后尽快测试,否则需要用相应龄期的 EDTA 二钠标准溶液消耗量的标准曲线确定。
 - 1.3 本方法也可以用来测定水泥和石灰综合稳定材料中结合料的剂量。

2 仪器设备

- 2.1 滴定管(酸式):50mL,1 支。
- 2.2 滴定台:1个。
- 2.3 滴定管夹:1 个。
- 2.4 大肚移液管:10mL、50mL,10 支。
- 2.5 锥形瓶(即三角瓶):200mL,20 个。
- 2.6 烧杯:2 000mL(或 1 000mL),1 只;300mL,10 只。
- 2.7 容量瓶:1000mL,1 个。
- 2.8 搪瓷杯:容量大于1 200mL,10 只。

- 2.9 不锈钢棒(或粗玻璃棒):10 根。
- 2.10 量筒:100mL和5mL,各1只;50mL,2只。
- 2.11 棕色广口瓶:60mL,1只(装钙红指示剂)。
- 2.12 电子天平: 量程不小于 1 500g, 感量 0.01g。
- 2.13 秒表:1 只。
- 2.14 表面皿: φ9cm, 10 个。
- **2.15** 研钵:φ12~13cm,1 个。
- 2.16 洗耳球:1 个。
- 2.17 精密试纸:pH12~14。
- **2.18** 聚乙烯桶:20L(装蒸馏水和氯化铵及 EDTA 二钠标准溶液),3 个;5L(装氢氧化钠),1 个;5L(大口桶),10 个。
 - 2.19 毛刷、去污粉、吸水管、塑料勺、特种铅笔、厘米纸。
 - 2.20 洗瓶(塑料):500mL,1 只。
- 3 试剂
- 3.1 0.1 mol/m³ 乙二胺四乙酸二钠(EDTA 二钠)标准溶液(简称 EDTA 二钠标准溶液):准确称取 EDTA 二钠(分析纯)37.23g,用 40~50℃的无二氧化碳蒸馏水溶解,待全部溶解并冷却至室温后,定容至1000mL。
- **3.2** 10% 氯化铵(NH_4Cl)溶液:将 500g 氯化铵(分析纯或化学纯)放在 10L 的聚乙烯桶内,加蒸馏水 4500mL,充分振荡,使氯化铵完全溶解。也可以分批在 1000mL 的烧杯内配制,然后倒入塑料桶内摇匀。
- 3.3 1.8% 氢氧化钠(内含三乙醇胺)溶液:用电子天平称 18g 氢氧化钠(NaOH)(分析纯),放入洁净干燥的 1000mL 烧杯中,加 1000mL 蒸馏水使其全部溶解,待溶液冷却至室温后,加入 2mL 三乙醇胺(分析纯),搅拌均匀后储于塑料桶中。

- **3.4** 钙红指示剂:将 0.2g 钙试剂羧酸钠(分子式 $C_{21}H_{13}N_2NaO_7S$,分子量 460.39)与 20g 预先在 105 烘箱中烘 1h 的硫酸钾混合。一起放人研钵中,研成极细粉末,储于棕色 广口瓶中,以防吸潮。
- 4 准备标准曲线
- **4.1** 取样:取工地用石灰和土,风干后用烘干法测其含水量(如为水泥,可假定含水量为0)。
 - 4.2 混合料组成的计算:
 - 4.2.1 公式:干料质量=湿料质量/(1+含水量)
 - 4.2.2 计算步骤:
 - (1)干混合料质量=湿混合料质量/(1+最佳含水量)
 - (2)干土质量=干混合料质量/(1+石灰或水泥剂量)
 - (3) 干石灰或水泥质量 = 干混合料质量 干土质量

 - (5)湿石灰质量=干石灰质量×(1+石灰的风干含水量)
 - (6) 石灰土中应加入的水 = 湿混合料质量 湿土质量 湿石灰质量
- **4.3** 准备 5 种试样,每种两个样品(以水泥稳定材料为例),如为水泥稳定中、粗粒土,每个样品取 1 000g 左右(如为细粒土,则可称取 300g 左右)准备试验。为了减少中、粗粒土的离散,宜按设计级配单份掺配的方式备料。
- 5种混合料的水泥剂量应为:水泥剂量为0,最佳水泥剂量左右、最佳水泥剂量±2%和+4%^①,每种剂量取两个(为湿质量)试样,共10个试样,并分别放在10个大口聚乙烯桶(如为稳定细粒土,可用搪瓷杯或1000mL具塞三角瓶;如为粗粒土,可用5L的大口聚乙烯桶)内。土的含水量应等于工地预期达到的最佳含水量,土中所加的水应与工地所用的水相同。
- 注①:在此,准备标准曲线的水泥剂量可为 0、2%、4%、6%、8%。如水泥剂量较高或较低,应保证工地实际所用水泥或石灰的剂量位于标准曲线所用剂量的中间。
- 4.4 取一个盛有试样的盛样器,在盛样器内加入两倍试样质量(湿料质量)体积的 10% 氯化铵溶液(如湿料质量为 300g,则氯化铵溶液为 600mL;如湿料质量为 1 000g,则氯化铵溶液为 2 000mL)。料为 300g,则搅拌 3min(每分钟搅 110~120次);料为 1 000g,则搅拌 5min。如用 1 000mL 具塞三角瓶,则手握三角瓶(瓶口向上)用力振荡 3min(每分钟 120次 ±5次),以代替搅拌棒搅拌。放置沉淀 10min^②,然后将上部清液转移到 300mL

烧杯内,搅匀,加盖表面皿待测。

注②:如10min 后得到的是混浊悬浮液,则应增加放置沉淀时间,直到出现无明显悬浮颗粒的悬浮液为止,并记录所需的时间。以后所有该种水泥(或石灰)稳定材料的试验,均应以同一时间为准。

- **4.5** 用移液管吸取上层(液面上 $1 \sim 2 \text{cm}$) 悬浮液 10.0 mL 放入 200 mL 的三角瓶内,用量管量取 1.8% 氢氧化钠(内含三乙醇胺)溶液 50 mL 倒入三角瓶中,此时溶液 pH 值为 $12.5 \sim 13.0$ (可用 $pH12 \sim 14$ 精密试纸检验),然后加入钙红指示剂(质量约为 0.2 g),摇匀,溶液呈玫瑰红色。记录滴定管中 EDTA 二钠标准溶液的体积 V_1 ,然后用 EDTA 二钠标准溶液滴定,边滴定边摇匀,并仔细观察溶液的颜色;在溶液颜色变为紫色时,放慢滴定速度,并摇匀;直到纯蓝色为终点,记录滴定管中 EDTA 二钠标准溶液体积 V_2 (以 mL 计,读至 0.1 mL)。计算 $V_1 \sim V_2$,即为 EDTA 二钠标准溶液的消耗量。
- **4.6** 对其他几个盛样器中的试样,用同样的方法进行试验,并记录各自的 EDTA 二钠标准溶液的消耗量。
- **4.7** 以同一水泥或石灰剂量稳定材料 EDTA 二钠标准溶液消耗量(mL)的平均值为纵坐标,以水泥或石灰剂量(%)为横坐标制图。两者的关系应是一根顺滑的曲线,如图 T 0809-1所示。如素土、水泥或石灰改变,必须重做标准曲线。

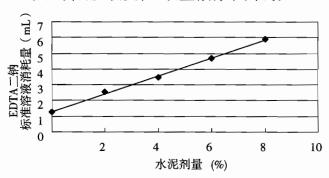


图 T 0809-1 EDTA 标准曲线

5 试验步骤

- **5.1** 选取有代表性的无机结合料稳定材料,对稳定中、粗粒土取试样约3000g,对稳定细粒土取试样约1000g。
- 5.2 对水泥或石灰稳定细粒土,称 300g 放在搪瓷杯中,用搅拌棒将结块搅散,加 10% 氯化铵溶液 600mL;对水泥或石灰稳定中、粗粒土,可直接称取 1 000g 左右,放入 10% 氯化铵溶液 2 000mL,然后如前述步骤进行试验。
 - 5.3 利用所绘制的标准曲线,根据 EDTA 二钠标准溶液消耗量,确定混合料中的水泥

或石灰剂量。

6 结果整理

本试验应进行两次平行测定,取算术平均值,精确至0.1mL。允许重复性误差不得大于均值的5%,否则,重新进行试验。

7 报告

试验报告应包括以下内容:

- (1)无机结合料稳定材料名称;
- (2)试验方法名称;
- (3)试验数量 n;
- (4)试验结果极小值和极大值;
- (5)试验结果平均值X;
- (6)试验结果标准差S;
- (7)试验结果变异系数 C_v 。

8 记录

工程名称

本试验的记录格式见表 T 0809-1。

表 T 0809-1 水泥或石灰剂量测定记录表

试验方法

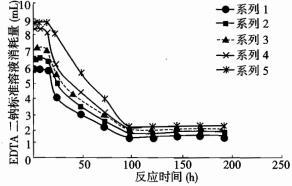
结构层线	名称				试	验 者		
稳定剂	钟类				校	核 者		
试样组	量号				试	验日期		
				标准	曲线制定	:	_	
平行试样			1			2		With Down - but we
-W.E	V_1	V_2		EDTA 二钠标准	V_1	V_2	EDTA 二钠标准	平均 EDTA 二钠标准
剂量	(mL)) (mI	۲)	溶液消耗量(mL)	(mL)	(mL)	溶液消耗量(mL)	溶液消耗量(mL)
_								
				_				
标准曲线公式	7							
						_		
冲铁枪员	V_1	V_2	E	DTA 二钠标准溶液	消耗量	平均 EDTA	二钠标准溶液消耗	量 结合料剂量
试样编号	(mL)	(mL)		(mL)			(mL)	(%)
1								
2								

条文说明

本方法来源于T0809-1994。

EDTA 滴定法的化学原理是: 先用 10%的 NH₄Cl 弱酸溶出水泥稳定材料中的 Ca²⁺, 然后用 EDTA 二钠标准溶液夺取 Ca2+,EDTA 二钠标准溶液的消耗量与相应的水泥剂量(水泥剂量的大小正比于 Ca2+的数量)存在近似线性关系。

尽管氯化铵的标装为一瓶 500g, 但在使用过程中氯化铵必须用电子秤称量, 不可用一瓶就当 500g。瓶装蒸馏水标装一桶为4500mL,在使用过程中必须重新过量筒。


在试验操作过程中,每个样品搅拌的时间、速度和方式应力求相同,以减小试验误差。在做标准曲 线时,如工地实际水泥剂量较大,则素集料和低剂量水泥的试样可以不做试验,而直接用较高的剂量试 验,但应有两种剂量大于实际剂量和两种剂量小于实际剂量。配制的氯化铵溶液最好当天用完,不要 放置过久,以免影响试验的精度。如素土、水泥或石灰较长时间没有改变,应在每天试验前,增加1~2 点对标准曲线进行验证,以减少原材料可能的离散对试验结果的影响。

应控制好滴定的各环节。在 EDTA 滴定过程中,溶液的颜色有明显的变化过程,从玫瑰红色变为 紫色,并最终变为蓝色。因此要把握好滴定的临界点,切不可直接将溶液滴到纯蓝色,因为在滴定过量 时,溶液的颜色始终保持为纯蓝色,因此如果没有经过临界点,则可能已经过量很多。一般来说,在溶 液颜色变为紫色后,如水泥剂量较低,1~2滴就能彻底变蓝;如水泥剂量较高,可能需要再多些。因 此,此时的滴定速度务必放慢,逐滴滴入,并保持摇匀,以免滴定过量。

原规程中规定钙红指示剂为黄豆粒大小,在试验过程中不好把握,因此此次修订给以定量表示。 钙红指示剂的作用是用来调节溶液的颜色,如果用量太少,颜色的变化不显著,容易滴定过量;如果用 量太多,就会使变蓝的溶液在搁置较长一段时间后又显现出紫色来。关于钙红指示剂的用量,有经验 的工作者也可根据经验确定,关键是要把握滴定过程中溶液颜色变化的规律。

在原规程中,为了减少做标准曲线试验取样的离散,将原材料过2~2.5mm 筛后,再进行配料,每 份取300g湿混合料进行标准曲线试验;而在现场测试中,则直接选取有代表性的水泥土或石灰土混合 料,称取300g进行滴定试验,导致室内的标准曲线试验和现场取样的滴定试验有明显的差别。为了消 除现场取样试验和室内标准曲线取样的差别,本次修订要求将室内标准曲线制作的湿混合料采用单份 掺配后进行试验,同时为了减少配料过程中的离散,对粗集料基层(最大粒径在 25mm 左右)必须有 1000g左右的总质量,放入体积(mL)是湿料质量(g)两倍的氯化铵溶液进行拌和,然后取样进行滴定。 试验表明,采用该种试验方法制作标准曲线和现场取样差别最小,可最大限度减少室内试验取样的离 散。但采用该方法以后氯化铵溶液的用量将显著增加,同时为了达到拌和的均匀性,搅拌时间和搅拌 力度增大。

原规程中规定,EDTA 滴定法用于稳定材料龄期 (7d 以内)的水泥和石灰含量测定。工程实践证明, 对水泥和石灰土,在不同龄期测出的灰剂量都在下 降。图 T 0809-2 为一组水泥稳定材料的 EDTA 滴定 量与龄期的关系图。随着龄期的增长,石灰稳定材料 和水泥稳定材料中的一部分钙离子已经与土中的矿 物发生反应,生成新的化合物,因此游离钙离子减少, 用初始的 EDTA 二钠标准溶液消耗量的标准曲线确 定的灰剂量必然下降。正确的做法是,在不同的龄期图T0809-2 反应龄期与EDTA二钠标准溶液耗量的关系 应该用不同的 EDTA 二钠标准溶液消耗量的标准曲 注:系列1、系列2、系列3、系列4、系列5分别为水泥 线,只有这样才能在不同龄期都能测出实际的灰剂剂量是4.0%、4.5%、5.0%、5.5%、6.0%时混合料拌 量。因此,现场土样灰剂量应在路拌后尽快测试,否 和后水泥剂量随时间变化的曲线。

则即使龄期不超过7d 也需要用相应龄期的 EDTA 二钠标准溶液消耗量的标准曲线确定。对水泥稳定材料超出终凝时间(12h 以后)所测定的水泥剂量,需作出相应的龄期校正。

EDTA 滴定法的龄期效应曲线与素集料、水泥剂量、水泥品质、稳定层压实度、养护、温度等因素有关,应按工地具体使用的材料和配合比,通过试验,制备好龄期效应标准曲线,为实际检测工作提供依据。水泥稳定材料的龄期修正以小时计;石灰及二灰修正以天计。水泥剂量测定不宜超过终凝;石灰剂量测定不宜超过火山灰反应开始时间,一般为7d。

T 0810—2009 石灰稳定材料中石灰剂量测定方法 (直读式测钙仪法)

1 适用范围

本方法适用于测定新拌石灰土中石灰的剂量。

- 2 仪器设备
 - 2.1 钙离子选择性电极(PVC 薄膜):1 支。
 - 2.2 饱和甘汞电极:232(或330)型,1支。
 - 2.3 直读式测钙仪:1 台。
- **2.4** 电子天平: 量程不小于1 500g, 感量 0.01g; 分析天平: 量程不小于 50g, 感量 0.000 1g, 各 1 台。
 - 2.5 量筒:1 000mL、200mL、50mL,各1只。
 - 2.6 具塞三角瓶:1 000mL,10 个(或搪瓷杯 10 个);500mL,4 个。
 - 2.7 大口聚乙烯桶:5L,4 个。
 - 2.8 烧杯:2 000mL,1 个;300mL,10 个;50mL,15 个。
 - 2.9 容量瓶:1 000mL,1 个。
 - 2.10 塑料瓶:10L,2 个:1 000mL,3 个:250mL,2 个。
 - 2.11 大肚移液管:100mL,1 支。

- 2.12 干燥器:1个。
- **2.13** 表面皿: ϕ 90mm,10 个: ϕ 50mm,15 个。
- 2.14 计时器:1 只。
- 2.15 搅拌子:20 只。
- 2.16 电炉、石棉网:各1个。
- 2.17 洗瓶:500mL,1 个。
- 2.18 其他:吸水管,洗耳球,粗、细玻璃棒,试剂勺。
- 3 制备溶液
 - 3.1 10% 氯化铵溶液

将 100g 氯化铵放入大烧杯中,加蒸馏水 900mL^{\oplus} ,搅拌均匀后,存放于塑料桶内保存。

3.2 20% 氢氧化钠溶液

用感量 0.01g 的电子天平迅速称取 40g 分析纯氢氧化钠(NaOH) 放入 300mL 烧杯中,加入 160mL 新煮沸并已冷却的蒸馏水。用玻璃棒充分搅匀后,转入塑料瓶中备用(若用玻璃瓶装,瓶塞应改用橡皮塞,避免因久放瓶塞打不开)。

3.3 10⁻¹ mol/m³ 氯化钙标准溶液

将分析纯碳酸钙(CaCO₃)在 180℃烘箱中烘 2h 后,取出放入干燥器内冷却 45min。用分析天平准确称取碳酸钙 10.009g 放入 300mL 烧杯中。用少许蒸馏水润湿后,从杯口用吸水管沿杯壁逐滴滴入 1:5稀盐酸(18mL 盐酸加 90mL 蒸馏水)并轻摇杯子,使碳酸钙全部溶解。然后用洗瓶吹洗杯壁,移至电炉上加热至微沸,并保持微沸 5min,以驱除二氧化碳。冷却后转移至 1 000mL 容量瓶中,用蒸馏水多次沿杯壁冲洗烧杯,将冲洗的水一并倒入容量瓶中。当蒸馏水加到约 950mL 左右时,再用 20% 氢氧化钠调至中性,使 pH 值为 7。最后用蒸馏水稀释至刻度,反复摇匀,静置后倒入1 000mL塑料瓶^②中备用。

注①:配制体积,可根据待测样品数量确定。

注②:装有各种溶液的塑料瓶(桶)均应贴上标签,写明浓度、溶液名称和配制日期。

3.4 10⁻² mol/m³ 氯化钙标准溶液

用大肚移液管吸取 10⁻¹mol/m³氯化钙标准溶液 100mL 放入 1 000mL 容量瓶中,加蒸馏水稀释到刻度后,充分摇匀,转入 1 000mL 塑料瓶中备用。

3.5 10⁻³ mol/m³ 氯化钙标准溶液

用大肚移液管吸取 10^{-2} mol/m³ 氯化钙标准溶液 100 mL 放入 1000 mL 容量瓶中,加蒸馏水稀释到刻度,充分摇匀,转入 1000 mL 塑料瓶中备用。

3.6 氯化钾饱和溶液

用感量 0.01g 的电子天平称分析纯氯化钾(KCl)70g,放入 300mL 烧杯中,用量筒取 200mL 蒸馏水倒入烧杯内,用玻璃棒充分搅动,溶液中应留有结晶(溶液呈过饱和状态), 移入塑料瓶中备用。

4 准备仪器和电极

4.1 钙电极(图 T 0810-1):在测定前一天,应将内参比电极从套管中取出,向管中滴入 10^{-1} mol/m³氯化钙标准溶液 15 滴左右。再将内参比电极装回管内。在每天进行测定之前,将钙电极从套管中取出,将有薄膜的一端放在 10^{-2} mol/m³氯化钙标准溶液中浸泡 2h,使电极活化。使用前取出电极,用水冲洗并用软纸吸干电极上的水分。

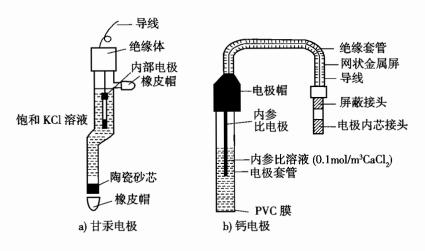


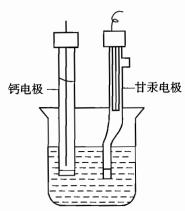
图 T 0810-1 甘汞电极和钙电极

- **4.2** 甘汞电极:检查内液面是否与上部加液口平,若内液面低时,拔去加液口橡皮帽并用滴管添加氯化钾饱和溶液。测定时拔去上端加液口橡皮帽和下端橡皮帽。用水冲洗并用软纸吸干水分。
 - 4.3 仪器:在测定前接通测钙仪电源,使仪器预热 20min。
- 5 准备石灰土标准剂量浸提液
 - 5.1 测定土和石灰的风干含水量。
 - 5.2 确定石灰土的最佳含水量。

5.3 计算6%、14%石灰土中石灰、土和水的质量。

5.4 石灰土标准剂量浸提液的制备:

用准备好的土和石灰配制 6%、14%^①的石灰土标准剂量浸提液供标定仪器用。用电子天平按本方法 5.3 中计算所得的量分别称取准备好的土样和石灰,制备以上两种剂量的石灰稳定材料。石灰稳定细粒土各制备 300g 湿混合料,分别放入 1 000mL 具塞三角瓶(或搪瓷杯)中,混匀。再用量筒加入 10% 氯化铵溶液 600mL,盖紧塞子用手振荡(或用搅拌棒搅拌)3min,保持每分钟 120 次 ±5 次。对石灰稳定中、粗粒土各制备 1 000g 湿混合料,分别放入 5L 聚乙烯桶中,混匀。再用量筒加入 10% 氯化铵溶液 2 000mL,用搅拌棒搅拌 5min。


以上溶液静置 10min 后,将上部清液用移液管转移到干燥、洁净的 500mL 具塞三角瓶中,摇匀,瓶外加贴标签,供以后标定仪器时用。

当石灰品种、土质和水质相同时,制备的6%、14%石灰土标准剂量浸提液可供连续标定10d之用。

注①:可以根据设计剂量选择石灰土标准浸提液剂量的上限,如果剂量高时,标定所用剂量的上限可以是 16% 或 18% 等。此时,标定仪器过程中调节旋钮 II 应使之显示 16.0 或 18.0 等。

6 标定仪器

6.1 将上述制备好的标准液分别移出 25~30mL 至干燥、洁净的 50mL 烧杯中,各加入一只搅拌子。先将 6% 标 钙电极准液放在直读式测钙仪上,待仪器开始搅拌后放入钙电极和甘汞电极(图 T 0810-2),停止搅拌后,调整校正 I 旋钮,使之显示 6.0;采样读数结束。将电极提起,取下 6% 标准液。用水冲洗电极并用软纸吸干电极上的水。

- **6.2** 再将装有 14% 标准液的烧杯放在直读式测钙仪上, 图 T 0810-2 测试示意图 开始搅拌后,放入钙电极和甘汞电极。停止搅拌后,调整校正 Ⅱ 旋钮,使之显示 14.0。
- **6.3** 如此重复 2~3 次。每次用 6% 和 14% 标准液校正均能显示 6.0 和 14.0 时,仪器标定即完毕。

7 试验步骤

- 7.1 从施工现场同一位置取具有代表性的石灰稳定中、粗粒土约3000g,石灰稳定细粒土试样约1000g,经进一步拌匀后备用。
- 7.2 用感量 0.01g 的电子天平称取两份石灰稳定细粒土试样各 300g,并分别放入两个 1 000mL 具塞三角瓶中,每个三角瓶中加 10% 氯化铵溶液 600mL。盖紧塞子用手振荡(或用不锈钢棒搅拌)2min,保持每分钟 120 次 ± 5 次。用感量 0.01g 的电子天平称取两份石

灰稳定中、粗粒土试样各 1 000g,并分别放入 5L 聚乙烯桶中,加 10% 氯化铵溶液 2 000mL 用搅拌棒搅拌 5min。

7.3 以上溶液静置 10min 后,将 25~30mL 待测液用移液管移入干燥、洁净的 50mL 烧杯中。加入一只搅拌子并放在直读式测钙仪上,仪器开始搅拌后,放入钙电极和甘汞电极,待停止搅拌后,仪器显示的数值即为该样品的石灰剂量。

8 结果整理

- 8.1 试验结果精确至 0.1%。
- 8.2 本试验应进行两次平行测定,取两次测试结果的平均值。

9 报告

试验报告应包括以下内容:

- (1)无机结合料稳定材料名称;
- (2)试验方法名称;
- (3)试验数量 n;
- (4)试验结果极小值和极大值;
- (5)试验结果平均值X;
- (6)试验结果标准差S;
- (7)试验结果变异系数 C_{vo}

10 记录

本试验的记录格式见表 T 0810-1。

表 T 0810-1 水泥或石灰剂量测定记录表

工 程 名 称	试验方法	
结构层名称	试 验 者	
稳定剂种类	校核者	
试 样 编 号	试验日期	
试样编号		
结合料剂量(%)		

条文说明

本规程源自T08010-1994。为统一编号,本规程中改为T0810-1994。

本次修订将原规程中仪器标定和现场测量取样统一起来,以最大程度减少取样造成的试验误差。 原规程中规定,将原材料过2mm或2.5mm筛后,再进行配料,每份取300g湿混合料制备溶液进行仪器 标定,而在现场测试中则直接选取有代表性的水泥土或石灰土混合料,过2mm或2.5mm筛后进行试 验。这就导致室内的仪器标定和现场取样的滴定试验有明显的差别。本次修订要求将仪器标定的湿混合料采用单份掺配后进行试验,同时为了减少配料过程中的离散,对粗集料基层(最大粒径在25mm左右)必须有1000g左右的总质量,放入体积(mL)是湿料质量(g)两倍的氯化铵溶液进行拌和。修订后的室内标定和现场取样的方法与T0809—2009一致。

在试验操作过程中应注意的事项有:在计算 6% 和 14% 混合料的组成时,应使混合料的最佳含水量与施工碾压时的最佳含水量相近。若土、石灰或水质有变化时,必须重新配制 6% 和 14% (或 16%、18%)石灰土标准剂量浸提液,并用它标定仪器。制备每个样品的浸提液时,搅拌的时间、速度和方式应力求相同。配制的氯化铵溶液当天用完,不宜放置过久。所用器具必须用水冲洗干净。每测完一个样品应用蒸馏水或自来水冲洗电极,并用软纸吸干后再测下一个样品。若进行全天测试,午间休息时可将钙电极薄膜端浸泡在 10⁻³ mol 氯化钙标准溶液中,下午测定前不必进行活化。下午测定结束后应用水冲洗电极,并用软纸吸干水,套上橡皮帽,然后挂起干放保存,次日用前再进行活化。在连续使用时,电极的内参比液应每周更换一次,以保证试验的稳定性。

试验规程 JTJ 057—1985 附录一为用钙电极测定灰土中石灰的剂量。它用电极电位仪测不同石灰剂量的石灰土浸提液的电位值。后来,又以 ST-C 土壤测钙仪 (现名为交直流两用石灰剂量测试仪) 替代电极电位仪测量石灰土浸提液的电位值。利用这些仪器测试前,需要制备 5 种不同标准剂量石灰土浸提液并绘制石灰剂量与电位值的关系曲线,即常称的工作曲线。由于钙电极固有的漂移现象,致使用同样的标准剂量浸提液绘制的工作曲线即使上、下午也有平移或不规则的漂移现象。所以,上午用标准剂量石灰土浸提液绘制的工作曲线,到下午就不再能用。也就是说,不仅每天测量前要绘制工作曲线,即使同一天上、下午也要各绘制一次工作曲线,否则测试结果就不准确。因此,这些仪器使用起来很不方便,达不到快速测量的目的。对比试验表明,土壤测钙仪的测试精度也较差,其变异系数 $C_{\rm v}=5.63\%$ 。

本规程采用直读式测钙仪代替上述仪器。采用该仪器测量只需制备两种不同标准剂量(6%和14%另一更高剂量)的石灰土浸提液,克服了用电极电位仪、土壤测钙仪和离子计等每天至少需用5种标准剂量石灰土浸提液绘制工作曲线的缺点。由于直读式测钙仪每次测量待测石灰土浸提液相应的石灰剂量前,都用两个标准剂量的浸提液对仪器进行快速标定,所以它不再受钙电极漂移的影响。测量任一浸提液时,直读式测钙仪显示屏上直接显示浸提液相应的石灰剂量,因此,它的使用很方便。它的测量精度高、测量结果准确。在室内对同样的浸提液用直读式测钙仪与EDTA滴定法的对比试验结果见表T0810-2。

设计剂量(%)		8	1	0	1	2	5.14
统计特性	均值 	变异系数 C _v (%)	均值 	变异系数 C _v (%)	均值 	变异系数 C _v (%)	平均 C _v (%)
直读式测钙仪	7.9	0.97	9.8	1.79	11.9	1.27	1.34
EDTA 滴定法	8.1	0.72	10.0	1.73	11.9	1.46	1.30

表 T 0810-2 直读式测钙仪与 EDTA 滴定法的对比试验结果

从表列结果可以看到,直读式测钙仪测量结果的准确性和精度都能达到标准方法 EDTA 滴定法的水平。

直读式测钙仪的测量过程与 EDTA 滴定法的测量过程相比,制备浸提液的过程是相同的。对浸提液进行剂量测定时,直读式测钙仪要简单得多,它免除了使用三乙醇胺、氢氧化钠、钙指示剂和 EDTA 二钠等化学试剂以及判断是否达到终点的困难。

现在市售的直读式测钙仪的适用范围已经拓宽,因此在具体使用过程中,应参考厂家的说明书,进行仪器自检和标定工作,以及相关操作。

T 0811—1994 石灰有效氧化钙测定方法

1 适用范围

本方法适用于测定各种石灰的有效氧化钙含量。

2 仪器设备

- 2.1 方孔筛:0.15mm,1 个。
- 2.2 烘箱:50~250℃,1台。
- 2.3 干燥器: \$\phi\$25cm,1 个。
- 2.4 称量瓶:φ30mm×50mm,10 个。
- 2.5 瓷研钵:φ12~13cm,1 个。
- 2.6 分析天平:量程不小于50g,感量0.0001g,1台。
- 2.7 电子天平:量程不小于500g,感量0.01g,1台。
- 2.8 电炉:1500W,1个。
- 2.9 石棉网:20cm×20cm,1块。
- **2.10** 玻璃珠: φ3mm,1 袋(0.25kg)。
- 2.11 具塞三角瓶:250mL,20 个。
- 2.12 漏斗:短颈,3个。
- 2.13 塑料洗瓶:1 个。
- 2.14 塑料桶:20L,1 个。
- 2.15 下口蒸馏水瓶:5 000mL,1 个。

- 2.16 三角瓶:300mL,10 个。
- 2.17 容量瓶:250mL、1000mL,各1个。
- 2.18 量筒:200mL、100mL、50mL、5mL,各1个。
- 2.19 试剂瓶:250mL、1 000mL,各5个。
- 2.20 塑料试剂瓶:1L,1 个。
- 2.21 烧杯:50mL,5 个;250mL(或 300mL),10 个。
- 2.22 棕色广口瓶:60mL,4 个;250mL,5 个。
- 2.23 滴瓶:60mL,3 个。
- 2.24 酸滴定管:50mL,2 支。
- 2.25 滴定台及滴定管夹:各1套。
- 2.26 大肚移液管:25mL、50mL,各1支。
- 2.27 表面皿:7cm,10块。
- 2.28 玻璃棒:8mm×250mm及4mm×180mm,各10支。
- 2.29 试剂勺:5个。
- 2.30 吸水管:8mm×150mm,5 支。
- 2.31 洗耳球:大、小各1个。
- 3 试剂
 - 3.1 蔗糖(分析纯)。
 - 3.2 酚酞指示剂:称取 0.5g 酚酞溶于 50mL 95% 乙醇中。

- 3.3 0.1% 甲基橙水溶液:称取 0.05g 甲基橙溶于 50mL 蒸馏水(40~50℃)中。
- **3.4** 盐酸标准溶液(相当于 0.5 mol/L): 将 42 mL 浓盐酸(相对密度 1.19)稀释至 1L, 按下述方法标定其摩尔浓度后备用。

称取 $0.8 \sim 1.0$ g(精确至 0.000 1g)已在 180 ℃烘干 2h 的碳酸钠(优级纯或基准级)记录为 m,置于 250 mL 三角瓶中,加 100 mL 水使其完全溶解;然后加入 $2 \sim 3$ 滴 0.1% 甲基橙指示剂,记录滴定管中待标定盐酸标准溶液的体积 V_1 ,用待标定的盐酸标准溶液滴定至碳酸钠溶液由黄色变为橙红色;将溶液加热至微沸,并保持微沸 3 min,然后放在冷水中冷却至室温,如此时橙红色变为黄色,再用盐酸标准溶液滴定,至溶液出现稳定橙红色时为止,记录滴定管中盐酸标准溶液的体积 V_2 。 V_1 、 V_2 的差值即为盐酸标准溶液的消耗量 V。

盐酸标准溶液的摩尔浓度^①按式(T0811-1)计算。

$$M = m/(V \times 0.053)$$
 (T 0811-1)

式中:M——盐酸标准溶液的摩尔浓度(mol/L);

m——称取碳酸钠的质量(g);

V---滴定时盐酸标准溶液的消耗量(mL);

0.053——与 1.00mL 盐酸标准溶液 [C(HCl) = 1.000mol/L] 相当的以克表示的无水碳酸钠的质量。

注①:该处盐酸标准溶液的浓度相当于1mol/L标准溶液浓度的一半左右。

4 准备试样

- **4.1** 生石灰试样:将生石灰样品打碎,使颗粒不大于 1.18mm。拌和均匀后用四分法缩减至 200g 左右,放入瓷研钵中研细。再经四分法缩减至 20g 左右。研磨所得石灰样品,通过 0.15mm(方孔筛)的筛。从此细样中均匀挑取 10 余克,置于称量瓶中在 105℃烘箱内烘至恒量,储于干燥器中,供试验用。
- **4.2** 消石灰试样:将消石灰样品用四分法缩减至 10 余克。如有大颗粒存在,须在瓷研钵中磨细至无不均匀颗粒存在为止。置于称量瓶中在 105℃烘箱内烘至恒量,储于干燥器中,供试验用。

5 试验步骤

- **5.1** 称取约 0.5g(用减量法称量,精确至 <math>0.0001g) 试样,记录为 m_1 ,放入干燥的 250 mL 具塞三角瓶中,取 5g 蔗糖覆盖在试样表面,投入干玻璃珠 15 粒,迅速加入新煮沸并已冷却的蒸馏水 50 mL,立即加塞振荡 15 min (如有试样结块或粘于瓶壁现象,则应重新取样)。
- **5.2** 打开瓶塞,用水冲洗瓶塞及瓶壁,加入 $2 \sim 3$ 滴酚酞指示剂,记录滴定管中盐酸标准溶液体积 V_3 ,用已标定的约 0.5 mol/L 盐酸标准溶液滴定(滴定速度以 $2 \sim 3$ 滴/s 为

宜),至溶液的粉红色显著消失并在 30s 内不再复现即为终点,记录滴定管中盐酸标准溶液的体积 V_4 。 V_3 、 V_4 的差值即为盐酸标准溶液的消耗量 V_5 。

6 计算

按式(T0811-2)计算有效氧化钙的含量。

$$X = \frac{V_5 \times M \times 0.028}{m_1} \times 100$$
 (T 0811-2)

式中:X——有效氧化钙的含量(%);

 V_s ——滴定时消耗盐酸标准溶液的体积(mL);

0.028——氧化钙毫克当量;

m₁——试样质量(g);

M——盐酸标准溶液的摩尔浓度(mol/L)。

7 结果整理

对同一石灰样品至少应做两个试样和进行两次测定,并取两次结果的平均值代表最终结果。石灰中氧化钙和有效钙含量在30%以下的允许重复性误差为0.40,30%~50%的为0.50,大于50%的为0.60。

8 报告

试验报告应包括以下内容:

- (1) 石灰来源;
- (2)试验方法名称;
- (3)单个试验结果;
- (4)试验结果平均值X。

9 记录

本试验的记录格式见表 T 0811-1。

表 T 0811-1 石灰有效氧化钙测定记录表

工程名称	试验方法
路段范围	试 验 者
石灰来源	校 核 者
试样编号	试验日期

盐酸标准溶液的摩尔浓度滴定

碳酸钠质量	滴定管□	中盐酸量	盐酸标准溶液消耗量	摩尔浓度	平均摩尔浓度 M
(g)	V ₁ (mL)	$V_2(\mathrm{mL})$	V(mL)	M(mol/L)	(mol/L)

石灰的有效氧化钙滴定					续上表
	石灰质量	滴定管口	 中盐酸量	盐酸标准溶液耗量 V _s	有效氧化钙含量
试验编号	(g)	$V_3(\mathrm{mL})$	V ₄ (mL)	(mL)	X(%)
			,		

条文说明

原规程中盐酸标准溶液采用当量浓度为单位,此次修订将当量浓度转换为摩尔浓度。当量浓度和摩尔浓度之间的换算关系如下:①对于酸碱滴定过程中的试剂浓度,主要看每个分子中氢离子或氢氧根离子的数量,1mol/L的盐酸就是1N的盐酸,1mol/L的硫酸就是2N的硫酸,同理1mol/L的氢氧化钠就是1N;②对于氧化还原滴定过程中的试剂浓度,要看每个分子在氧化还原反应过程中具体得到或失去的电子个数来确定,例如1mol/L的重铬酸钾就是6N(因为每个重铬酸钾分子中有两个铬离子,每个铬离子的价态由6+到3+得到3个电子);而硫酸亚铁铵作为还原剂,1mol/L的就是1N,因为一个硫酸亚铁铵分子被氧化后失去1个电子。总之,当量浓度的原则是,相同当量浓度的酸、碱试剂(或氧化剂、还原剂)发生反应时消耗的试剂体积相同。

原规程中称此处的盐酸标准溶液为0.5N 盐酸标准溶液,其称呼是相对于T08013—1994 中的1N 盐酸标准溶液的浓度而言的,而在式(T0811-1)和式(T0811-2)中依然用N 表示该处盐酸溶液的浓度,很容易引起误解。为了和T08013—1994 中1N 盐酸标准溶液区分开,将此处浓度相当于0.5N 的盐酸标准溶液直接说为盐酸标准溶液,并将原式(T0811-1)、式(T0811-2)中的N 改为M。

本试验是根据石灰活性氧化钙与蔗糖 $C_{12}H_{22}O_{11}$ 化合而成水溶性的蔗糖钙 $CaO \cdot C_{12}H_{22}O_{11} \cdot 2H_2O$,而石灰中其他非活性的钙盐则不与蔗糖作用,氧化镁则与蔗糖反应缓慢的原理,应用此不同的反应条件,采用中和滴定法,用已知浓度的盐酸进行滴定(以酚酞为指示剂),达到滴定终点时,按盐酸消耗量计算出有效氧化钙的含量。

分析化学中,在配制和标定标准溶液时,注意尽量减少操作误差。使用足够量的基准物,以保证测量相对误差不超过许可限度。现在普通分析天平的精度能够达到 0.000~1g,滴定管的体积测量绝对误差为 $\pm 0.02 \, \text{mL}$ 。所以基准物用量只有大于 $0.2g~ 10.00 \, \text{mL}$,才能保证测量相对误差不大于 $\pm 0.1\%$ 。 $0.4g~ 00.05 \, \text{me}$ 0.5 mol/L 盐酸滴定约消耗 1.000~ 10.0000~ 10.000~ 10.000~ 10.0000~ 10.000~ 10.0000~ 10.0000~ 10.0

生石灰打碎,原规程是过2mm 圆孔筛,现为统一采用标准方孔筛,筛孔为1.18mm。

该试验的操作关键有以下几条:①取样时,若是消石灰,用四分法缩至10g左右研细取得,而不是通过0.15mm 筛取得;②蔗糖要迅速覆盖试样,以防试样被碳化;③加热蒸馏水是为了排除二氧化碳,故冷却后马上进行下一步操作。另外,在试验检测中要注意石灰的有效钙含量随着其存放时间的增长在减少(尤其是野外露天存放)。

T 0812—1994 石灰氧化镁测定方法

1 适用范围

本方法适用于测定各种石灰的总氧化镁含量。

2 仪器设备

- 2.1 方孔筛:0.15mm,1 个。
- 2.2 烘箱:50~250℃,1台。
- 2.3 干燥器:φ25cm,1 个。
- 2.4 称量瓶:φ30mm×50mm,10 个。
- 2.5 瓷研钵:φ12~13cm,1 个。
- 2.6 分析天平:量程不小于50g,感量0.0001g,1台。
- 2.7 电子天平:量程不小于500g,感量0.01g,1台。
- 2.8 电炉:1500W,1个。
- 2.9 石棉网:20cm×20cm,1 块。
- **2.10** 玻璃珠:φ3mm,1 袋(0.25kg)。
- 2.11 具塞三角瓶:250mL,20 个。
- 2.12 漏斗:短颈,3个。
- 2.13 塑料洗瓶:1 个。
- 2.14 塑料桶:20L,1 个。
- 2.15 下口蒸馏水瓶:5 000mL,1 个。
- 2.16 三角瓶:300mL,10 个。
- 2.17 容量瓶:250mL、1 000mL,各1个。
- 2.18 量筒:200mL、100mL、50mL、5mL,各1个。

- 2.19 试剂瓶:250mL、1 000mL,各5个。
- 2.20 塑料试剂瓶:1L,1 个。
- 2.21 烧杯:50mL,5个;250mL(或300mL),10个。
- 2.22 棕色广口瓶:60mL,4 个;250mL,5 个。
- 2.23 滴瓶:60mL,3 个。
- 2.24 酸滴定管:50mL,2 支。
- 2.25 滴定台及滴定管夹:各1套。
- 2.26 大肚移液管:25mL、50mL,各1支。
- 2.27 表面皿:7cm,10块。
- 2.28 玻璃棒:8mm×250mm及4mm×180mm,各10支。
- 2.29 试剂勺:5个。
- 2.30 吸水管:8mm×150mm,5 支。
- 2.31 洗耳球:大、小各1个。
- 3 试剂
 - **3.1** 1:10 盐酸:将 1 体积盐酸(相对密度 1.19)以 10 体积蒸馏水稀释。
- 3.2 氢氧化铵—氯化铵缓冲溶液:将 67.5g 氯化铵溶于 300mL 无二氧化碳蒸馏水中,加浓氢氧化铵(氨水)(相对密度为 0.90)570mL,然后用水稀释至 1 000mL。
- **3.3** 酸性铬兰 K—萘酚绿 B(1:2.5)混合指示剂:称取 0.3g 酸性铬兰 K 和 0.75g 萘酚绿 B 与 50g 已在 105 ℃烘干的硝酸钾混合研细,保存于棕色广口瓶中。
 - 3.4 EDTA 二钠标准溶液:将10g EDTA 二钠溶于40~50℃蒸馏水中,待全部溶解并冷

却至室温后,用水稀释至1000mL。

- 3.5 氧化钙标准溶液:精确称取 1.784~8g 在 105 ℃烘干(2h)的碳酸钙(优级纯),置于 250 mL 烧杯中,盖上表面皿,从杯嘴缓慢滴加 1:10 盐酸 100 mL,加热溶解,待溶液冷却后,移入 1~000 mL 的容量瓶中,用新煮沸冷却后的蒸馏水稀释至刻度摇匀。此溶液每毫升的 Ca^{2+} 含量相当于 1 mg 氧化钙的 Ca^{2+} 含量。
 - 3.6 20% 的氢氧化钠溶液:将 20g 氢氧化钠溶于 80mL 蒸馏水中。
- **3.7** 钙指示剂:将 0.2g 钙试剂羧酸钠和 20g 已在 105℃烘干的硫酸钾混合研细,保存于棕色广口瓶中。
 - 3.8 10% 酒石酸钾钠溶液:将10g 酒石酸钾钠溶于90mL 蒸馏水中。
 - 3.9 三乙醇胺(1:2)溶液:将1体积三乙醇胺以2体积蒸馏水稀释摇匀。
- 4 EDTA 二钠标准溶液与氧化钙和氧化镁关系的标定
- **4.1** 精确吸取 $V_1 = 50$ mL 氧化钙标准溶液放于 300 mL 三角瓶中,用水稀释至 100 mL 左右,然后加入钙指示剂约 0.2 g,以 20 % 氢氧化钠溶液调整溶液碱度到出现酒红色,再过量加 $3 \sim 4$ mL,然后以 EDTA 二钠标准溶液滴定,至溶液由酒红色变成纯蓝色时为止,记录EDTA 二钠标准溶液体积 V_2 。
 - 4.2 EDTA 二钠标准溶液对氧化钙的滴定度按式(T 0812-1)计算。

$$T_{\text{CaO}} = CV_1/V_2 \tag{T 0812-1}$$

式中: T_{Cao} ——EDTA 二钠标准溶液对氧化钙的滴定度,即 1mL EDTA 二钠标准溶液相当于氧化钙的毫克数;

C——1 mL 氧化钙标准溶液含有氧化钙的毫克数,等于 1;

 V_1 ——吸取氧化钙标准溶液的体积(mL);

 V_2 ——消耗 EDTA 二钠标准溶液的体积(mL)。

4.3 EDTA 二钠标准溶液对氧化镁的滴定度(T_{MgO}),即 1mL EDTA 二钠标准溶液相当于氧化镁的毫克数,按式(T 0812-2)计算。

$$T_{\text{MgO}} = T_{\text{CaO}} \times \frac{40.31}{56.08} = 0.72 T_{\text{CaO}}$$
 (T 0812-2)

- 5 准备试样
 - 5.1 生石灰试样:将生石灰样品打碎,使颗粒不大于1.18mm。拌和均匀后用四分法 — 33 —

缩减至 200g 左右,放入瓷研钵中研细。再经四分法缩减至 20g 左右。研磨所得石灰样品,通过 0.15mm(方孔筛)的筛。从此细样中均匀挑取 10 余克,置于称量瓶中在 105℃烘箱内烘至恒量,储于干燥器中,供试验用。

5.2 消石灰试样:将消石灰样品用四分法缩减至 10 余克。如有大颗粒存在,须在瓷研钵中磨细至无不均匀颗粒存在为止。置于称量瓶中在 105℃烘箱内烘至恒量,储于干燥器中,供试验用。

6 试验步骤

- **6.1** 称取约 0.5g(精确至 0.000 1g) 石灰试样,并记录试样质量 m,放入 250mL 烧杯中,用水湿润,加 1:10 盐酸 30mL,用表面皿盖住烧杯,加热至微沸,并保持微沸 8-10min。
- **6.2** 用水把表面皿洗净,冷却后把烧杯内的沉淀及溶液移入 250mL 容量瓶中,加水至刻度摇匀。
- **6.3** 待溶液沉淀后,用移液管吸取 25mL 溶液,放入 250mL 三角瓶中,加 50mL 水稀释后,加酒石酸钾钠溶液 1mL、三乙醇胺溶液 5mL,再加入铵—铵缓冲溶液 10mL(此时待测溶液的 pH = 10)、酸性铬兰 K—萘酚绿 B 指示剂约 0.1g。记录滴定管中初始 EDTA 二钠标准溶液体积 V_5 ,用 EDTA 二钠标准溶液滴定,至溶液由酒红色变为纯蓝色时即为终点,记录滴定管中 EDTA 二钠标准溶液的体积 V_6 。 V_5 、 V_6 的差值即为滴定钙镁合量的 EDTA 二钠标准溶液的消耗量 V_3 。
- **6.4** 再从 6.2 的容量瓶中,用移液管吸取 25 mL 溶液,置于 300 mL 三角瓶中,加水 150 mL 稀释后,加三乙醇胺溶液 5 mL 及 20% 氢氧化钠溶液 5 mL(此时待测溶液的 pH \geq 12),放入约 0.2 g 钙指示剂。记录滴定管中初始 EDTA 二钠标准溶液体积 V_7 ,用 EDTA 二钠标准溶液滴定,至溶液由酒红色变为蓝色即为终点,记录滴定管中 EDTA 二钠标准溶液的体积 V_8 。 V_7 、 V_8 的差值即为滴定钙离子的 EDTA 二钠标准溶液的消耗量 V_4 。

7 计算

氧化镁的含量按式(T0812-3)计算。

$$X = \frac{T_{\text{MgO}}(V_3 - V_4) \times 10}{m \times 1000} \times 100$$
 (T 0812-3)

式中:X——氧化镁的含量(%);

 T_{MgO} ——EDTA 二钠标准溶液对氧化镁的滴定度;

 V_3 ——滴定钙镁合量消耗 EDTA 二钠标准溶液的体积(mL);

 V_a ——滴定钙消耗 EDTA 二钠标准溶液的体积(mL);

10——总溶液对分取溶液的体积倍数;

m----试样质量(g)。

8 结果整理

对同一石灰样品至少应做两个试样和进行两次测定,读数精确至 0.1 mL。取两次测定结果平均值代表最终结果。

9 报告

试验报告应包括以下内容:

- (1) 石灰来源;
- (2)试验方法名称;
- (3)单个试验结果;
- (4)试验结果平均值。

10 记录

本试验的记录格式见表 T 0812-1。

表 T 0812-1 石灰氧化镁测定记录表

工程名称		试验方法		
路段范围		试 验 者		
		校 核 者		
试样编号		试验日期		
试样编号				
试样质量(g)				
氧化钙溶液的体积 V ₁	(mL)			
EDTA 二钠标准溶液剂	肖耗量 V ₂ (mL)			
EDTA 二钠标准溶液对 CaO 的滴定度 T _{CaO}				
EDTA 二钠标准溶液x	付 MgO 的滴定度 T _{MgO}			
石灰试样质量 m(g)				
EDTA — ALEXA	滴定钙镁合量 V ₃	V ₅	V ₆	
EDTA 二钠标准 溶液消耗量				
(mL)	 滴定钙 V₄	V_{7}	V ₈	
			·	
氧化镁含量 X(%)				

条文说明

在原规程(T08012—1994)中,加入钙指示剂为0.1g,用于调节溶液的颜色。试验表明,加入0.1g — 35 —

的钙指示剂后,溶液的颜色较浅,不够显著。为了提高滴定精度,此次修订将钙指示剂的用量调整为0.2g。基于同样的原因,将试验步骤中的钙指示剂用量也调整为0.2g。

该试验是利用 EDTA 在 pH=10 左右的溶液中能与钙镁完全络合的原理,测出镁、钙总含量,再利用 EDTA 在 $pH\ge12$ 的溶液中只与钙离子络合的原理,测出钙含量,两者之差即为镁的含量。

一般来说,氧化镁的含量比氧化钙低, V_3 、 V_4 的差值(即滴定终点)很难控制,并且 V_3 、 V_4 的差值直接影响到氧化镁的含量,因此在试验中应严格做好各步操作。用万分之一天平称取石灰试样时宜用减量法。用 EDTA 二钠标准溶液滴定时, V_3 或 V_4 的滴定速度宜为 2~3 滴/s,不宜过快。滴定 V_3 或 V_4 时,有时溶液会由原来的酒红色变蓝色后又复现酒红色,因没有达到滴定终点,此时应继续滴定。其原因是溶液局部浓度过大,造成在滴定未到终点时,指示剂变蓝色,在不到 30s 内又恢复酒红色。此时应放慢速度,逐滴滴加,并不断摇动三角瓶,使反应充分,仔细观察由红变蓝的瞬间,使反应进行到底,蓝色稳定后再读取 V_3 、 V_4 的值。

T 0813—1994 石灰有效氧化钙和氧化镁简易测定方法

1 适用范围

本方法适用于氧化镁含量在5%以下的低镁石灰。

- 2 仪器设备
 - 2.1 方孔筛:0.15mm,1 个。
 - 2.2 烘箱:50~250℃,1台。
 - **2.3** 干燥器: φ25cm,1 个。
 - **2.4** 称量瓶: φ30mm ×50mm, 10 个。
 - **2.5** 瓷研钵: φ12~13cm,1 个。
 - **2.6** 分析天平:量程不小于 50g,感量 0.000 1g,1 台。
 - 2.7 电子天平:量程不小于500g,感量0.01g,1台。
 - 2.8 电炉:1500W,1个。
 - 2.9 石棉网:20cm×20cm,1 块。
 - **2.10** 玻璃珠:φ3mm,1 袋(0.25kg)。

- 2.11 具塞三角瓶:250mL,20 个。
- 2.12 漏斗:短颈,3 个。
- 2.13 塑料洗瓶:1 个。
- 2.14 塑料桶:20L,1 个。
- 2.15 下口蒸馏水瓶:5 000mL,1 个。
- 2.16 三角瓶:300mL,10 个。
- 2.17 容量瓶:250mL、1 000mL,各1个。
- 2.18 量筒:200mL、100mL、50mL、5mL,各1个。
- 2.19 试剂瓶:250mL、1 000mL,各5个。
- 2.20 塑料试剂瓶:1L,1 个。
- 2.21 烧杯:50mL,5个;250mL(或300mL),10个。
- 2.22 棕色广口瓶:60mL,4 个;250mL,5 个。
- 2.23 滴瓶:60mL,3 个。
- 2.24 酸滴定管:50mL,2 支。
- 2.25 滴定台及滴定管夹:各1套。
- 2.26 大肚移液管:25mL、50mL,各1支。
- 2.27 表面皿:7cm,10 块。
- 2.28 玻璃棒:8mm×250mm及4mm×180mm,各10支。

- 2.29 试剂勺:5个。
- 2.30 吸水管:8mm×150mm,5 支。
- 2.31 洗耳球:大、小各1个。

3 试剂

3.1 1mol/L 盐酸标准溶液:取 83mL(相对密度 1.19)浓盐酸以蒸馏水稀释至 1 000mL,按下述方法标定其摩尔浓度后备用。

称取已在 180% 烘箱內烘干 2h 的碳酸钠(优级纯或基准级纯) $1.5 \sim 2.0g$ (精确至 0.000~1g),记录为 m_0 ,置于 250mL 三角瓶中,加 100mL 水使其完全溶解;然后加入 $2 \sim 3$ 滴 0.1% 甲基橙指示剂,记录滴定管中待标定的盐酸标准溶液初始体积 V_1 ,用待标定的盐酸标准溶液滴定,至碳酸钠溶液由黄色变为橙红色;将溶液加热至微沸,并保持微沸 3min,然后放在冷水中冷却至室温,如此时橙红色变为黄色,再用盐酸标准溶液滴定,至溶液出现稳定橙红色时为止,记录滴定管中盐酸标准溶液体积 V_2 。 V_1 、 V_2 的差值即为盐酸标准溶液的消耗量 V。

盐酸标准溶液的摩尔浓度按式(T0813-1)计算。

$$N = m_0 / (V \times 0.053)$$
 (T 0813-1)

式中:N——盐酸标准溶液的摩尔浓度(mol/L);

 m_0 ——称取碳酸钠的质量(g);

V——滴定时消耗盐酸标准溶液的体积(mL);

- 0.053——与 1.00 mL 盐酸标准溶液 [C(HCl) = 1.000 mol/L] 相当的以克表示的无水碳酸钠的质量。
- 3.2 1% 酚酞指示剂。

4 准备试样

- **4.1** 生石灰试样:将生石灰样品打碎,使颗粒不大于 1.18mm。拌和均匀后用四分法缩减至 200g 左右,放入瓷研钵中研细。再经四分法缩减至 20g 左右。研磨所得石灰样品,应通过 0.15mm(方孔筛)的筛。从此细样中均匀挑取 10 余克,置于称量瓶中在 105℃ 烘箱烘至恒量,储于干燥器中,供试验用。
- **4.2** 消石灰试样:将消石灰样品用四分法缩减至 10 余克左右。如有大颗粒存在,须在瓷研钵中磨细至无不均匀颗粒存在为止。置于称量瓶中在 105℃烘箱烘至恒量,储于干燥器中,供试验用。

5 试验步骤

5.1 迅速称取石灰试样 0.8~1.0g(精确至 0.000 1g)放入 300mL 三角瓶中,记录试

样质量 m。加入 150 mL 新煮沸并已冷却的蒸馏水和 10 颗玻璃珠。瓶口上插一短颈漏斗,使用带电阻的电炉加热 5 min(调到最高档),但勿使液体沸腾,放入冷水中迅速冷却。

5.2 向三角瓶中滴入酚酞指示剂 2 滴,记录滴定管中盐酸标准溶液体积 V_3 ,在不断摇动下以盐酸标准溶液滴定,控制速度为 2~3 滴/s,至粉红色完全消失,稍停,又出现红色,继续滴入盐酸,如此重复几次,直至 5min 内不出现红色为止,记录滴定管中盐酸标准溶液体积 V_4 。 V_3 、 V_4 的差值即为盐酸标准溶液的消耗量 V_5 。如滴定过程持续半小时以上,则结果只能作参考。

6 计算

有效氧化钙和氧化镁含量按式(T0813-2)计算。

$$X = \frac{V_5 \times N \times 0.028}{m} \times 100$$
 (T 0813-2)

式中:X——有效氧化钙和氧化镁的含量(%);

 V_5 ——滴定消耗盐酸标准溶液的体积(mL);

N----盐酸标准溶液的摩尔浓度(mol/L);

m---样品质量(g);

0.028——氧化钙的毫克当量,因氧化镁含量甚少,并且两者之毫克当量相差不大,故有效氧化钙和氧化镁的毫克当量都以 CaO 的毫克当量计算。

7 结果整理

- 7.1 读数精确至 0.1 mL。
- **7.2** 对同一石灰样品至少应做两个试样和进行两次测定,并取两次测定结果的平均值代表最终结果。

8 报告

试验报告应包括以下内容:

- (1) 石灰来源:
- (2)试验方法名称;
- (3)单个试验结果;
- (4)试验结果平均值。

9 记录

本试验的记录格式见表 T 0813-1。

表 T 0813-1 石灰有效氧化钙和氧化镁含量试验记录表 工程名称_____ 试验方法____ 试 验 者 路段范围 校 核 者_____ 石灰来源 试验日期 试样编号 盐酸标准溶液的摩尔浓度滴定 摩尔浓度 滴定管中盐酸标准溶液体积 碳酸钠质量 盐酸标准溶液消耗量 平均摩尔浓度 N V(mL)(mol/L) (g) V_1 (mL) $V_2(\mathrm{mL})$ (mol/L)石灰的钙镁含量滴定 滴定管中盐酸标准溶液体积 盐酸标准溶液消耗量 石灰钙镁含量 石灰质量 试验编号 V_5 (mL) X(%)(g) V_3 (mL) V_4 (mL)

条文说明

2

氧化镁分解缓慢,如果氧化镁含量高,则到达滴定终点的时间会很长,从而增加了与空气中二氧化碳的作用时间,影响测定结果,因此本方法适用于氧化镁含量在5%以下的低镁石灰。

T 0814-2009 石灰细度试验方法

1 适用范围

本方法适用于生石灰、生石灰粉和消石灰粉的细度试验。

2 仪器设备

- 2.1 试验筛:0.6mm、0.15mm,1套。
- 2.2 羊毛刷:4号。
- 2.3 天平:量程不小于500g,感量0.01g。

3 试样准备

取 300g 生石灰粉或消石灰粉试样,在 105℃烘箱中烘干备用。

4 试验步骤

称取试样 50g, 记录为 m, 倒入 0.6 mm、0.15 mm 方孔套筛内进行筛分。筛分时一只手握住试验筛, 并用手轻轻敲打, 在有规律的间隔中, 水平旋转试验筛, 并在固定的基座上轻敲试验筛, 用羊毛刷轻轻地从筛上面刷, 直至 2 min 内通过量小于 0.1g 时为止。分别称量筛余物质量 m_1 、 m_2 。

5 计算

筛余百分含量按式(T0814-1)、式(T0814-2)计算。

$$X_1 = \frac{m_1}{m} \times 100 \tag{T 0814-1}$$

$$X_2 = \frac{m_1 + m_2}{m} \times 100 \tag{T 0814-2}$$

式中: X_1 —— 0.6mm 方孔筛筛余百分含量(%);

 X_2 —— 0.6mm、0.15mm 方孔筛,两筛上的总筛余百分含量(%);

m₁—— 0.6mm 方孔筛筛余物质量(g);

 m_2 —— 0.15mm 方孔筛筛余物质量(g);

m——试样质量(g)。

6 结果整理

- 6.1 计算结果保留小数点后两位。
- **6.2** 取 3 个试样进行平行试验,然后取平均值作为 X_1 、 X_2 的值。3 次试验的重复性误差均不得大于 5%, 否则应另取试样重新试验。

7 报告

试验报告应包括以下内容:

- (1) 石灰来源;
- (2)试验方法名称;
- (3)0.6mm 方孔筛筛余百分含量;
- (4)0.15mm 方孔筛筛余百分含量。

8 记录

本试验的记录格式见表 T 0814-1。

表 T 0814-1 石灰细度试验记录表 工程名称 试验方法 试 验 者 路段范围 石灰来源 校核者 试样编号 试验日期 0.15mm 筛余 样品质量 m 0.6mm 筛余 X_{1} X_2 项目 物质量 m₁(g) 物质量 m2(g) (g) (%) (%) 第一次 第二次 第三次 平均值

条文说明

本试验方法参照《建筑石灰试验方法 物理试验方法》(JC/T 478.1—1992)编制。《公路路面基层施工技术规范》(JTJ 034—2000)规定,石灰细度采用通过 0.71mm 方孔筛和 0.125mm 方孔筛的含量确定,而当前的标准筛的筛孔为 0.6mm 和 0.15mm,为了和当前工程中应用的筛孔一致,本次修订将筛孔统一调整为 0.6mm 和 0.15mm,并根据石灰在基层材料中的使用方法确定了平行试验次数。

T 0815—2009 石灰未消化残渣含量测定方法

1 适用范围

本方法适用于生石灰、生石灰粉和消石灰粉的未消化残渣含量的测定。

2 仪器设备

- 2.1 方孔筛:2.36mm、16mm。
- 2.2 生石灰浆渣测定仪(图 T 0815-1)。
- 2.3 量筒:500mL。
- 2.4 天平:量程不小于 1 500g,感量 0.01g。
- 2.5 搪瓷盘:200mm×300mm。
- 2.6 钢板尺:300mm。

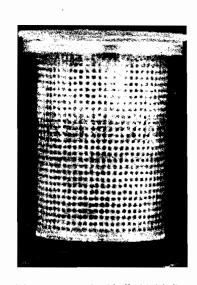


图 T 0815-1 生石灰浆渣测定仪

- 2.7 烘箱:量程不小于200℃。
- 2.8 保温套。
- 3 试验步骤
- **3.1** 将 4 000g 试样破碎并全部通过 16mm 方孔筛,其中通过 2.36mm 方孔筛的试样量不大于 30%,混合均匀,备用。生石灰粉试样混合均匀即可。
- 3.2 称取已制备好的生石灰试样 1 000g 倒入装有 2 500mL(20℃ ±5℃)清水的筛筒 (筛筒置于外筒内)。盖上盖,静置消化 20min,用圆木棒连续搅动 2min,再静置消化 40min,再搅动 2min。提起筛筒用清水冲洗筛筒内残渣,至水流不浑浊(冲洗用清水仍倒入筛筒内,水总体积控制在 3 000mL)。
- **3.3** 将残渣移入搪瓷盘(或蒸发皿)内,在 105℃烘箱中烘干至恒量,冷却至室温后用 2.36mm 方孔筛筛分。称量筛余物 *m*₁,计算未消化残渣含量。
- 4 计算

未消化残渣含量按式(T0815-1)计算。

$$X = \frac{m_1}{m} \times 100 \tag{T 0815-1}$$

式中:X——未消化残渣含量(%);

*m*₁——2.36mm 筛余物质量(g); *m*——试样质量(g)。

- 5 结果整理
 - 5.1 试验结果保留小数点后两位。
- **5.2** 取 3 次独立试样进行平行试验,然后取平均值作为试验结果。允许重复性误差应不大于 5%,否则应增加样本量重新试验。
- 6 报告

试验报告应包括以下内容:

- (1) 石灰来源;
- (2)试验方法名称;
- (3)单个试验结果;
- (4)试验结果平均值。

7 记录

本试验的记录格式见表 T 0815-1。

表 T 0815-1 石灰未消化残渣含量试验记录表

工程名称		试验方法	
路段范围		试 验 者	
石灰来源		校 核 者	
试样编号			
项 目	样品质量 m(g)	2.36mm 筛余物质量 m ₁ (g)	未消化残渣含量 X(%)
第一次			
第二次			
第三次			
	平均值		

条文说明

本试验方法参照《建筑石灰试验方法 物理试验方法》(JC/T 478.1—1992)编制,并根据石灰在基层材料中的使用方法确定了平行试验次数。

T 0816—2009 粉煤灰二氧化硅、氧化铁和氧化铝含量测定方法

1 适用范围

本方法适用于测定粉煤灰中二氧化硅、氧化铝和氧化铁的含量。

2 仪器设备

- 2.1 分析天平:不应低于四级,量程不小于100g,感量0.000 1g。
- 2.2 氧化铝、铂、瓷坩埚:带盖,容量 15~30mL。
- 2.3 瓷蒸发皿:容量 50~100mL。
- **2.4** 马福炉:隔焰加热炉,在炉膛外围进行电阻加热。应使用温度控制器,准确控制炉温,并定期进行校验。
 - 2.5 玻璃容量器皿:滴定管、容量瓶、移液管。

- 2.6 玻璃棒。
- 2.7 沸水浴。
- 2.8 玻璃三角架。
- 2.9 干燥器。
- **2.10** 分光光度计:可在 400 ~ 700nm 范围内测定溶液的吸光度,带有 10mm、20mm 比色皿。
 - 2.11 研钵:玛瑙研钵。
 - 2.12 精密 pH 试纸:酸性。
- 3 试样准备

分析过程中,只应用蒸馏水或同等纯度的水;所用试剂应为分析纯或优级纯试剂。用于标定与配制标准溶液的试剂,除另有说明外,均应为基准制剂。

除另有说明外,%表示质量分数。本规程中使用的市售浓液体试剂具有下列密度 ρ (20°C,单位 g/cm³ 或%):

盐酸(HCl)

1.18~1.19g/cm³ 或 36%~38%;

氢氟酸(HF)

1.13g/cm³ 或 40%;

硝酸(HNO3)

 $1.39 \sim 1.41 \text{g/cm}^3$ 或 65% ~ 68%;

硫酸(H₂SO₄)

1.84g/cm³ 或 95% ~ 98%;

氨水(NH₃・H₂O)

 $0.90 \sim 0.91 \text{ g/cm}^3$ 或 25% ~ 28%。

在化学分析中,所用酸或氨水,凡未注浓度者均指市售的浓度或浓氨水。用体积比表示试剂稀释程度^①。

注①:盐酸(1+2)表示1份体积的浓盐酸与2份体积的水相混合。

- 3.1 盐酸:(1+1);(1+2);(1+4);(1+11);(3+97)。
- 3.2 硝酸:(1+9)。
- 3.3 硫酸:(1+4);(1+1)。
- 3.4 氨水:(1+1);(1+2)。

- 3.5 硝酸银溶液(5g/L):将 5g 硝酸银 $(AgNO_3)$ 溶于水中,加 10mL 硝酸 (HNO_3) ,用水稀释至 1L。
 - 3.6 氯化铵(NH₄Cl)。
 - 3.7 无水乙醇(C,H,OH):体积分数不低于99.5%;乙醇,体积分数95%;乙醇(1+4)。
 - 3.8 无水碳酸钠(Na₂CO₃):将无水碳酸钠用玛瑙研钵研细至粉末状保存。
- **3.9** 1—(2—吡啶偶氮)—2—萘酚(PAN)指示剂溶液:将 0.2g PAN 溶于 100mL 体积分数为 95% 的乙醇中。
- **3.10** 钼酸铵溶液(50g/L):将 5g 钼酸铵[(NH_4)₆ $Mo_7O_{24} \cdot 4H_2O$]溶于水中,加水稀释至 100mL. 过滤后储存于塑料瓶中。此溶液可保存约一周。
- **3.11** 抗坏血酸溶液(5g/L):将 0.5g 抗坏血酸(V.C)溶于 100mL 水中,过滤后使用,用时现配。
- **3.12** 氢氧化钾溶液(200g/L):将 200g 氢氧化钾(KOH)溶于水中,加水稀释至 1L,储存于塑料瓶中。
- **3.13** 焦硫酸钾 $(K_2S_2O_7)$:将市售焦硫酸钾在瓷蒸发皿中加热熔化,待气泡停止发生后,冷却、砸碎,储存于磨口瓶中。
- 3.14 钙黄绿素—甲基百里香酚蓝—酚酞混合指示剂溶液(简称 CMP 混合指示剂): 称取 1.000g 钙黄绿素、1.000g 甲基百里香酚蓝、0.200g 酚酞与 50g 已在 105℃烘干过的硝酸钾(KNO₃)混合研细,保存在磨口瓶中。
 - **3.15** 碳酸钙标准溶液[C(CaCO₃) = 0.024mol/L]:

称取 $0.6g(m_1)$ 已于 $105 \sim 110$ ℃ 烘过 2h 的碳酸钙 ($CaCO_3$),精确至 0.000 1g,置于 400 mL 烧杯中,加入约 100 mL 水,盖上表面皿,沿杯口滴加盐酸 (1+1) 至碳酸钙全部溶解,加热煮沸数分钟;将溶液冷却至室温,移入 250 mL 容量瓶中,用水稀释至标线,摇匀。

- **3.16** EDTA 二钠标准溶液[C(EDTA) = 0.015mol/L]:
 - 3.16.1 标准滴定溶液的配制

称取 EDTA 二钠(乙二胺四乙酸二钠盐)约 5.6g 置于烧杯中,加约 200mL 水,加热溶

解,过滤,用水稀释至1L。

3.16.2 EDTA 二钠标准溶液浓度的标定

吸取 25.00mL 碳酸钙标准溶液(见 3.15)置于 400mL 烧杯中,加水稀释至约 200mL,加入适量的 CMP 混合指示剂(见 3.14),在搅拌下加入氢氧化钾溶液至出现绿色荧光后再过量 2~3mL,以 EDTA 二钠标准溶液滴定至绿色荧光消失并呈现红色。

EDTA 二钠标准溶液的浓度按式(T 0816-1)计算。

$$C(\text{EDTA}) = \frac{m_1 \times 25 \times 1000}{250 \times V_4 \times 100.09} = \frac{m_1}{V_4} \times \frac{1}{1.0009}$$
 (T 0816-1)

式中:C(EDTA)——EDTA 二钠标准溶液的浓度(mol/L);

 V_4 ——滴定时消耗 EDTA 二钠标准溶液的体积(mL);

 m_1 ——按 3.15 配制碳酸钙标准溶液的碳酸钙的质量(g);

100.09——CaCO₃的摩尔质量(g/mol)。

3.16.3 EDTA 二钠标准溶液对各氧化物滴定度的计算

EDAT 二钠标准溶液对三氧化二铁、三氧化二铝、氧化钙、氧化镁的滴定度分别按式 (T0816-2)~式(T0816-5)计算。

$$T_{\text{Fe}_2\text{O}_3} = C(\text{EDTA}) \times 79.84$$
 (T 0816-2)

$$T_{\text{Al}_{20}} = C(\text{EDTA}) \times 50.98$$
 (T 0816-3)

$$T_{\text{CaO}} = C(\text{EDTA}) \times 56.08$$
 (T 0816-4)

$$T_{\text{MgO}} = C(\text{EDTA}) \times 40.31$$
 (T 0816-5)

式中: T_{Feo} ——每毫升 EDTA 二钠标准溶液相当于三氧化二铁的毫克数(mg/mL);

 T_{AloO} ——每毫升 EDTA 二钠标准溶液相当于三氧化二铝的毫克数(mg/mL);

 T_{CaO} ——每毫升 EDTA 二钠标准溶液相当于氧化钙的毫克数(mg/mL);

 T_{Mol} ——每毫升 EDTA 二钠标准溶液相当于氧化镁的毫克数(mg/mL);

C(EDTA)——EDTA 二钠标准溶液的浓度(mol/L);

79.84——(1/2Fe₂O₃)的摩尔质量(g/mol);

50.98——(1/2Al₂O₃)的摩尔质量(g/mol);

56.08——CaO 的摩尔质量(g/mol);

40.31——MgO 的摩尔质量(g/mol)。

- **3.17** pH4.3 的缓冲溶液:将 42.3g 无水乙酸钠(CH₃COONa)溶于水中,加 80mL 冰乙酸(CH₃COOH),用水稀释至 1L,摇匀。
 - **3.18** 硫酸铜标准溶液 [C(CuSO₄) = 0.015 mol/L]:
 - 3.18.1 标准溶液的配制

将 3.7g 硫酸铜($CuSO_4 \cdot 5H_2O$) 溶于水中,加 $4 \sim 5$ 滴硫酸(1 + 1),用水稀释至 1L,摇匀。

3.18.2 EDTA 二钠标准溶液与硫酸铜标准溶液体积比的标定

从滴定管缓慢放出 [C(EDTA) = 0.015 mol/L] EDTA 二钠标准溶液 $10 \sim 15 mL(见 3.16)$ 于 400 mL 烧杯中,用水稀释至约 150 mL,加 15 mL pH4. 3 的缓冲溶液(见 3.17),加 热至沸,取下稍冷,加 $5 \sim 6$ 滴 PAN 指示剂溶液(见 3.9),以硫酸铜标准溶液滴定至亮紫色。

EDTA 二钠标准溶液与硫酸铜标准溶液的体积比按式(T0816-6)计算。

$$K_2 = \frac{V_5}{V_6} \tag{T 0816-6}$$

式中: K_2 ——每毫升硫酸铜标准溶液相当于 EDTA 二钠标准溶液的毫升数;

 V_5 ——EDTA 二钠标准溶液的体积(mL);

 V_6 ——滴定时消耗硫酸铜标准溶液的体积(mL)。

- **3.19** EDTA—铜溶液:按[C(EDTA) = 0.015 mol/L]EDTA 二钠标准溶液(见 3.16)与[$C(CuSO_4) = 0.015 mol/L$]硫酸铜标准溶液(见 3.18)的体积比,标准配置成等浓度的混合溶液。
 - 3.20 溴酚蓝指示剂溶液:将 0.2g 溴酚蓝溶于 100mL 乙醇(1+4)中。
 - 3.21 磺基水杨酸钠指示剂溶液:将 10g 磺基水杨酸钠溶于水中,加水稀释至 100mL。
- **3.22** pH₃ 的缓冲溶液:将 3.2g 无水乙酸钠(CH₃COONa)溶于水中,加 120mL 冰乙酸(CH₃COOH),用水稀释至 1L,摇匀。
 - 3.23 二氧化硅(SiO₂)标准溶液:

3.23.1 标准溶液的配制

称取 0.200 0g 经 1 000 ~ 1 100℃ 新灼烧过 30min 以上的二氧化硅(SiO₂),精确至 0.000 1g,置于铂坩埚中,加入 2g 无水碳酸钠,搅拌均匀,在 1 000 ~ 1 100℃ 高温下熔融 15min。冷却,用热水将熔块浸出于盛有热水 300mL 的塑料杯中,待全部溶解后冷却至室 温,移入 1 000mL 容量瓶中,用水稀释至标线,摇匀,移入塑料瓶中保存。此标准溶液每毫 升含有 0.2mg 二氧化硅。

吸取 10.00mL 上述标准溶液于 100mL 容量瓶中,用水稀释至标线,摇匀,移入塑料瓶中保存。此标准溶液每毫升含有 0.02mg 二氧化硅。

3.23.2 工作曲线的绘制

吸取每毫升含有 0.02mg 二氧化硅的标准溶液 0mL、2.00mL、4.00mL、5.00mL、6.00mL、8.00mL、10.00mL 分别放入 100mL 容量瓶中,加水稀释至约 40mL,依次加入 5mL 盐酸(1+11)、8mL 体积分数为 95% 的乙醇、6mL 钼酸铵溶液。放置 30min 后,加入 20mL 盐酸(1+1)、5mL 抗坏血酸溶液,用水稀释至标线,摇匀。放置 1h 后,使用分光光度计、10mm 比色皿,以水作参比,于 660nm 处测定溶液的吸光度。用测得的吸光度作为相对应的二氧化硅含量的函数,绘制工作曲线。

4 试验准备

4.1 灼烧

将滤纸和沉淀物放入已灼烧并恒量的坩埚中,烘干。在氧化性气氛中慢慢灰化,不使 其产生火焰,灰化至无黑色炭颗粒后,放入马福炉中,在规定的温度950~1000℃下灼烧。 在干燥器中冷却至室温,称量。

4.2 检查 Cl 离子(硝酸银检验)

按规定洗涤沉淀数次后,用数滴水淋洗漏斗的下端,用数毫升水洗涤滤纸和沉淀,将滤液收集在试管中,加几滴硝酸银溶液,观测试管中溶液是否浑浊,继续洗涤并定期检查,直至硝酸银检验不再浑浊为止。

4.3 恒量

经第一次灼烧、冷却、称量后,通过连续每次15min的灼烧,然后用冷却、称量的方法来检查质量是否恒定。当连续两次称量之差小于0.0005g时,即达到恒量。

5 试验步骤

5.1 二氧化硅的测定(碳酸钠烧结,氯化铵质量法)

试验以无水碳酸钠烧结,盐酸溶解,加固体氯化铵于沸水浴上加热蒸发,使硅酸凝聚(经过滤灼烧后称量)。用氢氟酸处理后,失去的质量即为胶凝性二氧化硅的质量,加上从滤液中比色回收的可溶性二氧化硅质量即为二氧化硅的总质量。

5.1.1 胶凝性二氧化硅的测定

- (1)称取约 0.5g 试样(m_1),精确至 0.0001g,置于铂坩埚中,将盖斜置于坩埚上,在 $950 \sim 1000$ ℃下灼烧 5min,冷却。用玻璃棒仔细压碎块状物,加入 $0.3g \pm 0.01g$ 无水碳酸钠(见 3.8)混匀,再将坩埚置于 $950 \sim 1000$ ℃下灼烧 10min,放冷。
- (2)将烧结块移入瓷蒸发皿中,加少量水润湿,用平头玻璃棒压碎块状物,盖上表面皿,从皿口滴入5mL盐酸及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使其分解完全,用热盐酸(1+1)清洗坩埚数次,洗液合并于蒸发皿中。将蒸发皿置于沸水浴上,皿下放一玻璃三角架,再盖上表面皿。蒸发至糊状后,加入1g氯化铵,充

分搅匀,在蒸汽水浴上蒸发至干后继续蒸发 10~15min,蒸发期间用平头玻璃棒仔细搅拌 并压碎大颗粒。

- (3)取下蒸发皿,加入10~20mL 热盐酸(3+97),搅拌使可溶性盐类溶解。用中速滤纸过滤,用胶头擦棒擦洗玻璃棒及蒸发皿,用热盐酸(3+97)洗涤沉淀3~4次,然后用热水充分洗涤沉淀,直至检验无氯离子为止(见4.2)。滤液及洗液保存在250mL容量瓶中。
- (4)将沉淀连同滤纸一并移入铂坩埚中,将盖斜置于坩埚上,在电炉上干燥灰化完全后放入950~1000℃的马福炉内灼烧(见4.1)1h,取出坩埚置于干燥器中冷却至室温,称量。反复灼烧,直至恒量(m_2)。
- (5)向坩埚中加数滴水润湿沉淀,加3滴硫酸(1+4)和10mL氢氟酸,放入通风橱内电热板上缓慢蒸发至干,升高温度继续加热至三氧化硫白烟完全逸尽。将坩埚放入950~1000℃的马福炉内灼烧30min,取出坩埚置于干燥器中冷却至室温,称量。反复灼烧,直至恒量(*m*₃)。

5.1.2 经氢氟酸处理后的残渣的分解

向按方法 5.1.1 经过氢氟酸处理后得到的残渣中加入 0.5g 焦硫酸钾(见 3.13)熔融,熔块用热水和数滴盐酸(1+1)溶解,溶液并入按方法 5.1.1 分离二氧化硅后得到的滤液和洗液中,用蒸馏水稀释至标线,摇匀。此溶液 A 供测定滤液中残留的可溶性二氧化硅(见 5.1.3)、三氧化二铁(见 5.2)、三氧化二铝(见 5.3)用。

5.1.3 可溶性二氧化硅的测定(硅钼蓝光度法)

从溶液 A 中吸取 25.00mL 溶液放入 100mL 容量瓶中。用水稀释至 40mL,依次加入 5mL 盐酸(1+11)、95% (V/V) 乙醇 8mL、6mL 钼酸铵溶液,放置 30min 后加入 20mL 盐酸 (1+1)、5mL 抗坏血酸溶液,用水稀释至标线,摇匀。放置 1h 后,使用分光光度计、10mm 比色皿,以水作参比,于 660nm 处测定溶液的吸光度。在工作曲线上(见 3.23.2)查出二氧化硅的质量 m_4 。

5.1.4 计算

胶凝性二氧化硅的含量按式(T0816-7)计算。

$$X_{\text{ROMM:SiO}_2} = \frac{m_2 - m_3}{m_1} \times 100$$
 (T 0816-7)

式中: $X_{\text{REW}(SiO_3)}$ ——胶凝性二氧化硅的含量(%);

m,——灼烧后未经氢氟酸处理的沉淀及坩埚的质量(g);

 m_3 ——用氢氟酸处理并经灼烧后的残渣及坩埚的质量(g):

 m_1 ——试料的质量(g)。

可溶性二氧化硅的含量按式(T0816-8)计算。

$$X_{\text{ji} \text{metSiO}_2} = \frac{m_4 \times 250}{m_1 \times 25 \times 1000} \times 100 = \frac{m_4}{m_1}$$
 (T 0816-8)

式中: X_{TightSiO} ——可溶性二氧化硅的含量(%);

 m_4 ——按该法测定的 $100 \,\mathrm{mL}$ 溶液中所含的二氧化硅的质量(mg);

 m_1 ——本方法 5.1.1 中试料的质量(g)。

5.1.5 结果表示

SiO, 总含量按式(T0816-9)计算。

$$X_{\text{\&SiO}_2} = X_{\text{ko} \text{\&EtSiO}_2} + X_{\text{pratsio}_2}$$
 (T 0816-9)

5.1.6 结果整理

平行试验两次,允许重复性误差为0.15%。

5.2 三氧化二铁的测定(基准法)

5.2.1 目的和适用范围

在 pH1.8 ~ 2.0、温度为 60 ~ 70℃的溶液中,以磺基水杨酸钠为指示剂,用 EDTA 二钠标准溶液滴定。

5.2.2 操作流程

从溶液 A(见 5.1.2)中吸取 25.00mL 溶液放入 300mL 烧杯中,加水稀释至约 100mL,用氨水(1+1)和盐酸(1+1)调节溶液 pH 值在 1.8~2.0 之间(用精密 pH 试纸检验)。将溶液加热至 70%,加 10 滴磺基水杨酸钠指示剂溶液,此时溶液为紫红色。用[C(EDTA)=0.015mol/L]EDTA 二钠标准溶液缓慢地滴定至亮黄色(终点时溶液温度应不低于 60%,如终点前溶液温度降至近 60%时,应再加热至 $60\sim70\%$)。保留此溶液供测定三氧化二铝用。

5.2.3 计算

按式(T0816-10)计算三氧化二铁的含量。

$$X_{\text{Fe}_2\text{O}_3} = \frac{T_{\text{Fe}_2\text{O}_3} \times V_1 \times 10}{m_1 \times 1000} \times 100 = \frac{T_{\text{Fe}_2\text{O}_3} \times V_1}{m_1}$$
 (T 0816-10)

式中: $X_{\text{Fe},0}$ ——三氧化二铁的含量(%);

 $T_{\text{Fe}_2\text{O}_3}$ ——每毫升 EDTA 二钠标准溶液相当于三氧化二铁的毫克数(mg/mL);

 V_1 ——滴定时消耗 EDTA 二钠标准溶液的体积(mL);

 m_1 ——本方法 5.1.1 中试料的质量(g)。

5.2.4 结果整理

平行试验两次,允许重复性误差为0.15%。

5.3 三氧化二铝的测定

5.3.1 目的和适用范围

将滴定三氧化二铁后的溶液 pH 值调整至 3,在煮沸状态下用 EDTA—铜和 PAN 为指 示剂,用 EDTA 二钠标准溶液滴定。

5.3.2 操作流程

将 5.2 中测完三氧化二铁的溶液用水稀释至约 200mL,加 1~2 滴溴酚蓝指示剂溶 液,滴加氨水(1+1)至溶液出现蓝紫色,再滴加盐酸(1+1)至黄色,加入 pH3 的缓冲溶 液 15mL,加热至微沸并保持 1min,加入 10 滴 EDTA—铜溶液,及 2~3 滴 PAN 指示剂,用 $\lceil C(EDTA) = 0.015 \text{ mol/L} \rceil EDTA$ 二钠标准溶液滴定至红色消失,继续煮沸,滴定,直至溶 液经煮沸后红色不再出现,呈稳定的亮黄色为止。记下 EDTA 二钠标准溶液消耗量 V_{3} 。

5.3.3 计算

按式(T0816-11)计算三氧化二铝的含量。

$$X_{\text{Al}_2\text{O}_3} = \frac{T_{\text{Al}_2\text{O}_3} \times V_3 \times 10}{m_1 \times 1000} \times 100 = \frac{T_{\text{Al}_2\text{O}_3} \times V_3}{m_1}$$
 (T 0816-11)

式中: $X_{Al,0}$,——三氧化二铝的含量(%);

 $T_{Al_2O_3}$ ——每毫升 EDTA 二钠标准溶液相当于三氧化二铝的毫克数(mg/mL); V_3 ——滴定时消耗 EDTA 二钠标准溶液的体积(mL);

 m_1 ——本方法 5.1.1 中试料的质量(g)。

5.3.4 结果整理

平行试验两次,允许重复性误差为0.20%。

6 报告

试验报告应包括以下内容:

- (1)粉煤灰来源;
- (2)试验方法名称;
- (3)二氧化硅的含量;
- (4)三氧化二铁的含量;
- (5)三氧化二铝的含量。

条文说明

本方法与现行《水泥化学分析方法》(GB/T 176)中水泥的二氧化硅(基准法)、三氧化二铁(基准

法)、三氧化二铝(基准法)含量的试验方法等效。

T 0817—2009 粉煤灰烧失量测定方法

1 适用范围

本方法适用于粉煤灰烧失量的测定。本方法将试样在950~1000℃的马福炉中灼烧,驱除水分和二氧化碳,同时将存在的易氧化元素氧化。由硫化物的氧化引起的烧失量误差必须进行校正,其他元素存在引起的误差一般可忽略不计。

2 仪器设备

- **2.1** 马福炉:隔焰加热炉,在炉膛外围进行电阻加热。应使用温度控制器,准确控制炉温,并定期进行校验。
 - 2.2 瓷坩埚:带盖,容量 15~30mL。
 - 2.3 分析天平:量程不小于50g,感量0.0001g。

3 试验步骤

- 3.1 将粉煤灰样品用四分法缩减至 10 余克左右,如有大颗粒存在,须在研钵中磨细至 无不均匀颗粒存在为止,置于小烧杯中在 105~110℃烘干至恒量,储于干燥器中,供试 验用。
 - 3.2 将瓷坩埚灼烧至恒量,供试验用。
- 3.3 称取约 1g 试样(m_0),精确至 0.000 1g,置于已灼烧至恒量的瓷坩埚中,放在马福炉内从低温开始逐渐升高温度,在 $950 \sim 1~000$ 个下灼烧 $15 \sim 20$ min,取出坩埚置于干燥器中冷却至室温,称量。反复灼烧,直至连续两次称量之差小于 0.000~5g 时,即达到恒量。记录每次称量的质量。

4 计算

烧失量按式(T0817-1)计算。

$$X = \frac{m_0 - m_n}{m_0} \times 100 \tag{T 0817-1}$$

式中:X----烧失量(%);

 m_0 ——试料的质量(g);

 m_n ——灼烧后试料的质量(g)。

5 结果整理

- 5.1 试验结果精确至 0.01%。
- 5.2 平行试验两次,允许重复性误差为0.15%。
- 6 报告

试验报告应包括以下内容:

- (1)粉煤灰来源;
- (2)试验方法名称;
- (3)粉煤灰的烧失量。

7 记录

本试验的记录格式见表 T 0817-1。

表 T 0817-1 粉煤灰烧失量试验记录表

工程名称	试验方法
路 段 范 围	试 验 者
粉煤灰来源	校 核 者
试样编号	试验日期

项 目	样品质量 m ₀ (g)	第一次灼烧后质量 m ₁ (g)	第二次灼烧后质量 m₂(g)	第 n 次灼烧后样品质量 m _n (g)	烧失量 X(%)
第一次					
第二次					
平均值					

条文说明

本方法参照现行《水泥化学分析方法》(GB/T 176)中烧失量测定的基准法编制。如果粉煤灰中含有硫化物,硫化物引起的误差必须通过公式进行校正。

 $0.8 \times ($ 粉煤灰灼烧测得的 SO_3 含量 - 粉煤灰未经灼烧时的 SO_3 含量) $=0.8 \times ($ 由于硫化物的氧化产生的 SO_3 含量) = 吸收空气中氧的含量校正后的烧失量(%) = 测得的烧失量(%) + 吸收空气中氧的含量

其中,SO₃的测定参照现行《水泥化学分析方法》(GB/T 176)的硫酸盐—三氧化硫的测定(基准法)进行。

T 0818—2009 粉煤灰细度试验方法

1 适用范围

本方法适用于粉煤灰细度的检验。本方法利用气流作为筛分的动力和介质,通过旋转的喷嘴喷出的气流作用使筛网里的待测粉状物料呈流态化,并在整个系统负压的作用下,将细颗粒通过筛网抽走,从而达到筛分的目的。

2 仪器设备

2.1 负压筛析仪:

负压筛析仪主要由 $0.075 \, \text{mm}$ 方孔筛、 $0.3 \, \text{mm}$ 方孔筛、筛座、真空源和收尘器等组成,其中 $0.075 \, \text{mm}$ 、 $0.3 \, \text{mm}$ 方孔筛内径为 $\phi 150 \, \text{mm}$,外框高度为 $25 \, \text{mm}$ 。 $0.075 \, \text{mm}$ 和 $0.3 \, \text{mm}$ 方孔筛及负压筛析仪筛座结构示意图如图 T 0818-1、图 T 0818-2 所示。

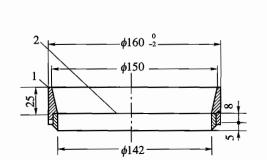


图 T 0818-1 0.075mm 方孔筛示意图(尺寸单位;mm) 1-筛框;2-筛网

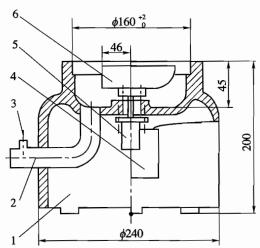


图 T 0818-2 筛座示意图(尺寸单位:mm) 1-壳体;2-负压源及收尘器接口;3-负压表接口;4-控制板 开口;5-微电机;6-喷气嘴

2.2 电子天平:量程不小于50g,感量0.01g。

3 试验步骤

- **3.1** 将测试用粉煤灰样品置于温度为 105~110℃烘箱内烘干至恒量,取出放在干燥器中冷却至室温。
- **3.2** 称取试样约 10g,精确至 0.01g,记录试样质量 m_2 ,倒在 0.075mm 方孔筛网上,将 筛子置于筛座上,盖上筛盖。

- 3.3 接通电源,将定时开关固定在3min,开始筛析。
- **3.4** 开始工作后,观察负压表,使负压稳定在 4 000~6 000 Pa。若负压小于 4 000 Pa,则应停机,清理收尘器中的积灰后再进行筛析。
 - 3.5 在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。
- **3.6** 3min 后筛析自动停止,停机后观察筛余物,如出现颗粒成球、粘筛或有细颗粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛析 $1 \sim 3$ min 直至筛分彻底为止。将筛网内的筛余物收集并称量,精确至 0.01 g,记录筛余物质量 m_1 。
- **3.7** 称取试样约 100g,准确至 0.01g,记录试样质量 m_3 ,倒入 0.3mm 方孔筛网上,使粉煤灰在筛面上同时有水平方向及上下方向的不停顿的运动,使小于筛孔的粉煤灰通过筛孔,直至 1min 内通过筛孔的质量小于筛上残余量的 0.1% 为止。记录筛子上面粉煤灰的质量为 m_4 。

4 计算

粉煤灰通过百分含量按式(T0818-1)、式(T0818-2)计算。

$$X_1 = \frac{m_2 - m_1}{m_2} \times 100 \tag{T 0818-1}$$

$$X_2 = \frac{m_3 - m_4}{m_3} \times 100 \tag{T 0818-2}$$

式中: X_1 ——0.075mm 方孔筛通过百分含量(%);

 X_2 —0.3mm 方孔筛通过百分含量(%);

 m_1 ——0.075mm 方孔筛筛余物质量(g);

m₄——0.3mm 方孔筛筛余物质量(g);

 m_2 ——过 0.075mm 方孔筛的样品质量(g);

 m_3 ——过 0.3 mm 方孔筛的样品质量(g)。

5 结果整理

- 5.1 计算结果保留小数点后两位。
- 5.2 平行试验 3 次,允许重复性误差均不得大于 5%。

6 筛网的校正

筛网的校正采用粉煤灰细度标准样品或其他同等级标准样品。按本方法"3 试验步

骤"测定标准样品的细度,筛网校正系数按式(T0818-3)计算。

$$K = \frac{m_0}{m}$$
 (T 0818-3)

式中:K----筛网校正系数;

 m_0 ——标准样品筛余标准值(%);

т──标准样品筛余实测值(%)。

注:筛网校正系数范围为0.8~1.2,筛析150个样品后进行筛网的校正。

7 记录

本试验的记录格式见表 T 0818-1。

表 T 0818-1 粉煤灰细度试验记录表

工 桯名 称			试验フ	5法		
路段范围			试 验	者		
	粉煤灰	· 来源	校核	者		
	试样编	류号	试验日	· 期		
项	目	样品质量 m ₂ 、m ₃ (g)	0.075mm 筛余物质量 m ₁ (g)	0.3mm 筛余物质量 m ₄ (g)	X ₁ (%)	X ₂ (%)
第	一次					
第	二次		·			
第	三次					
			平均值			

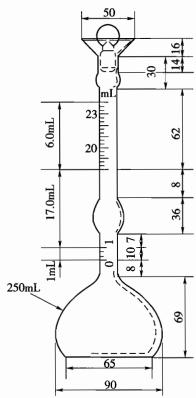
条文说明

本试验方法参照《用于水泥和混凝土中的粉煤灰》(GB/T 1596—2005)编制,同时根据《公路路面基层施工技术规范》(JTJ 034—2000)中关于粉煤灰细度要求,确定采用 0.3mm、0.075mm 方孔筛测定粉煤灰的细度,并根据粉煤灰在基层材料中的使用方法确定了平行试验次数。

T 0819—2009 石灰、粉煤灰密度测定方法

1 适用范围

本方法适用于检测石灰、粉煤灰的密度,供石灰、粉煤灰稳定类材料配合比设计计算使用。同时适用于沥青混合料中石灰密度的测定。


2 仪器设备

2.1 李氏比重瓶:容量为 250mL 或 300mL,如图 T 0819-1 所示。

- 2.2 天平:感量 0.01g。
- 2.3 烘箱:能控温在 105℃ ±2℃。
- 2.4 恒温水槽:能控温在 20℃ ±0.5℃。
- 2.5 煤油:无水,使用前需过滤并抽去煤油中的空气。
- 2.6 其他:瓷皿、小牛角匙、干燥器、漏斗等。

3 试验步骤

- 3.1 将代表性的试样置于瓷皿中,在 105℃烘箱中烘干至恒量(一般不少于 6h),放入干燥器中冷却后,试样的质量不少于 200g。
- 3.2 向比重瓶中注入煤油,至刻度 0~1mL 之间,将比重 瓶放入 20℃的恒温水槽中,静放至比重瓶中的油温不再变 化为止(一般不少于 2h),读取比重瓶中煤油液面的刻度 图 T 0819-1 (*V*₁),以弯液面的下部为准,精确至 0.02mL。

· 图 T 0819-1 李氏比重瓶(尺寸单位:mm)

- 3.3 将比重瓶取出擦干,用滤纸将李氏比重瓶内零点以上的没有煤油的部分仔细擦净。并将电子天平擦净,将比重瓶放在电子天平上清零。用小牛角匙将石灰(粉煤灰)通过漏斗徐徐加入比重瓶中,待比重瓶中煤油的液面上升至接近比重瓶的最大读数时为止。取下漏斗,擦净瓶壁和电子天平上可能洒落的石灰。然后将比重瓶放在电子天平上,读取电子天平的读数,即为加入石灰(粉煤灰)的质量 m,一般在 50g 左右。石灰(粉煤灰)粉不得粘在比重瓶颈壁上。
- 3.4 盖上比重瓶的盖子,轻轻摇晃比重瓶,使瓶中的空气充分逸出,至液体不再产生气泡时为止。再次将比重瓶放入恒温水槽中,待温度不再变化时,读取比重瓶的读数 V_2 ,以弯液面的下部为准。整个试验过程中,比重瓶中的温度变化不得超过 1° C。

4 计算

按式(T0819-1)计算石灰、粉煤灰的密度。

$$\rho_{\rm f} = \frac{m}{V_2 - V_1} \tag{T 0819-1}$$

$$\gamma_{\rm f} = \frac{\rho_{\rm f}}{\rho_{\rm w}} \tag{T 0819-2}$$

式中: ρ_f ——试样的密度(g/cm³);

 γ_{i} ——试样对于水的相对密度,无量纲;

m——试样的干燥质量(g);

V,——加试料前的比重瓶读数(mL);

 V_2 ——加试料后的比重瓶读数(mL);

 $\rho_{\rm w}$ ——试验温度时水的密度(g/cm³)。

5 结果整理

- 5.1 试验结果精确至小数点后3位。
- 5.2 同一试样应平行试验两次,取平均值作为试验结果。重复性试验误差不得大于 0.01g/cm³。

6 报告

试验报告应包括以下内容:

- (1) 石灰、粉煤灰的来源;
- (2) 石灰等级;
- (3)试验方法名称;
- (4)试验结果平均值。

7 记录

本试验的记录格式见表 T 0819-1。

表 T 0819-1 石灰、粉煤灰的密度测定记录表

工程名称		_ 试验方法			
试 验 者		校核者			
试样编号				<u>. </u>	
平行试验次数	试样质量 m(g)	V ₁ (mL)	V ₂ (mL)	密度 $ ho_{\rm f}({ m g/cm^3})$	_

条文说明

由于石灰粉很细,石灰排除空气的难度较大,而气泡的排除影响到试验结果,因此需要多次晃动, 且仔细观察气泡冒出情况。在连续晃动多次后,不见气泡冒出才可认为气泡已经排出。由于煤油易于 挥发,因此不能静置太长时间,瓶口必须盖紧,最好盖上湿巾,阻止煤油的挥发。不同温度下水的密度 修正参照《公路工程集料试验规程》(JTG E42—2005)附录 B。

T 0820-2009 粉煤灰比表面积测定方法(勃氏法)

1 适用范围

本方法适用于用勃氏比表面积透气仪(简称勃氏仪)来测定粉煤灰的比表面积,也适用于比表面积在2000~6000cm²/g范围内的其他各种粉状物料,不适用于测定多孔材料及超细粉状物料。

2 仪器设备

- 2.1 勃氏仪:应符合现行 JC/T 956 的要求,如图 T 0820-1,由透气圆筒、穿孔板、捣器、U 形压力计、抽气 装置等组成。透气圆筒阳锥与 U 形压力计的阴锥应能 严密连接。U 形压力计上的阀门以及软管等接口处应能 密封。在密封的情况下,压力计内的液面在 3 min 内应不下降。
- 2.2 透气圆筒:内径为 12.70mm ± 0.05mm,由不锈钢或铜质材料制成。透气圆筒内表面和阳锥外表面的粗糙度: ≤Ra1.6。在透气圆筒内壁距离上口边 55mm ± 10mm处有一突出的、宽度为 0.5~1.0mm的边缘,以放置穿孔板。透气圆筒阳锥锥度:19/38。19:19mm ± 1mm;38:34~38mm。两者 1:10 增减。

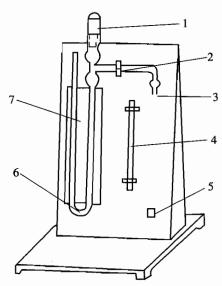


图 T 0820-1 勃氏仪示意图 1-透气圆筒;2-活塞;3-背面接微型电磁 泵;4-温度计;5-开关;6-U 形压力计;7-平 面镜

- **2.3** 穿孔板:由不锈钢或铜质材料制成,厚度为1.0mm ± 0.1mm。穿孔板直径为 $12.70^{0}_{-0.05}$ mm,穿孔板面上均匀地打有 35 个直径为 1.00mm ± 0.05mm 的小孔。
- 2.4 捣器:用不锈钢或铜质材料制成。捣器与透气圆筒的间隙 ≤0.1mm;捣器底面应与主轴垂直,垂直度小于6′。捣器侧面扁平槽宽度:3.0mm±0.3mm。当捣器放入透气圆筒,捣器的支持环与圆筒上口边接触时,捣器底面与穿孔板间的距离:15.0mm±0.5mm。
- 2.5 U形压力计(图 T 0820-2):由玻璃制成,U形压力计玻璃管外径:9.0mm ±0.5mm;U形压力计 U形的间距:25mm ±1mm;U形压力计在连接透气圆筒的一臂上刻有环形线,U形压力计底部到第 1 条刻度线的距离:130~140mm;U形压力计上第 1 条刻度线与第 2 条刻度线的距离:15mm ±1mm;U形压力计上第 1 条刻度线与第 3 条刻度线的距离:70mm ±1mm;U形压力计底部往上 280~300mm 处有一出口管,管上装有阀门,连接抽气装置。U形压力计与透气圆筒相连的阴锥锥度:19/38。19:19mm ±1mm;38:34~38mm。两者 1:10 增减。

2.6 抽气装置:其吸力能保证水面超过第3条刻度线。

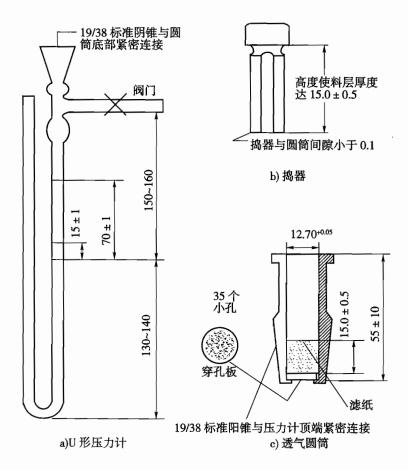


图 T 0820-2 U 形压力计、捣器和透气圆筒的结构及部分尺寸示意图(尺寸单位:mm)

- 2.7 滤纸:中速定量滤纸。
- 2.8 分析天平:感量为 0.001g。
- 2.9 秒表:分度值为 0.5s。
- 2.10 烘箱:控温精度±1℃。
- 3 材料
 - **3.1** 压力计液体 压力计液体采用带有颜色的蒸馏水。
 - **3.2** 汞 分析纯汞。

3.3 基准材料

水泥细度和比表面积标准样(满足 GSB 14-1511 或相同等级的标准物质)。

4 勃氏仪的标定

4.1 勃氏仪圆筒试料层体积的标定方法

用水银排代法标定圆筒的试料层体积。将穿孔板平放入圆筒内,再放入两片滤纸。然后用水银注满圆筒,用玻璃片挤压圆筒上口多余的水银,使水银面与圆筒上口平齐,倒出水银称量 (m_1) ,然后取出一片滤纸,在圆筒内加入适量的试样。再盖上一片滤纸后用捣器压实至试料层规定高度。取出捣器用水银注满圆筒,同样用玻璃片挤压平后,将水银倒出称量 (m_2) 。圆筒试料层体积按式 $(T\ 0820-1)$ 计算。

$$V = (m_1 - m_2)/\rho_{3k48} \tag{T 0820-1}$$

式中:V——透气圆筒的试料层体积 (cm^3) ;

 m_1 ——未装试样时,充满圆筒的水银质量(g);

 m_2 ——装试样后,充满圆筒的水银质量(g);

 ρ_{x} ——试验温度下水银的密度(g/cm³)。

试料层体积要重复测定两遍,取平均值,计算精确至0.001cm3。

4.2 勃氏仪标准时间的标定方法

用水泥细度和比表面积标准样测定标准时间。

4.2.1 标准样的处理

将水泥细度和比表面积标准样在110℃±5℃下烘干1h并在干燥器中冷却至室温。

4.2.2 标准样质量的确定

标准样质量按式(T0820-2)计算。

$$m_0 = \rho V(1 - \varepsilon) \tag{T 0820-2}$$

式中: m_0 ——称取水泥细度和比表面积标准样的质量(g);

 ρ ——水泥细度和比表面积标准样的密度(g/cm^3);

V——透气圆筒的试料层体积 (cm^3) ;

ε——取 0.5 °

精确称取至 0.001g。

4.2.3 试料层制备

将穿孔板放入透气圆筒的突缘上,用捣棒把一片滤纸放到穿孔板上,边缘放平并压

紧。将准确称取的按本方法 4.2.2 计算的水泥细度和比表面积标准样倒入圆筒,轻敲圆筒的边,使粉煤灰层表面平坦。再放入一片滤纸,用捣器均匀压实标准样直至捣器的支持环紧紧接触圆筒顶边,旋转捣器 1~2圈,慢慢取出捣器。

4.2.4 透气试验

将装好标准样的圆筒外锥面涂一薄层凡士林,把它连接到 U 形压力计上,打开阀门,缓慢地从压力计一臂中抽出空气,直到压力计内液面上升到超过第 3 条刻度线时关闭阀门。当压力计内液面的弯月面下降到第 3 条刻线时开始计时,当液面的弯月面下降到第 2 条刻线时停止计时。记录液面从第 3 条刻线到第 2 条刻线所需的时间 t_s ,精确至 0.1s。透气试验要重复称取两次标准样分别进行,当两次透气时间的差超过 1.0s 时,要测第 3 遍,取两次不超过 1.0s 的平均透气时间作为该仪器的标准时间。

5 试验步骤

- **5.1** 粉煤灰样品取样后,应先通过 0.9mm 方孔筛,再在 105℃的烘箱中烘干至恒量,并在干燥器中冷却至室温。
 - 5.2 按 T 0819—2009 方法测定粉煤灰密度。

5.3 漏气检查

将透气圆筒上口用橡皮塞塞紧,接到压力计上。用抽气装置从压力计一臂中抽出部分气体,然后关闭阀门,观察是否漏气。如发现漏气,用活塞油脂加以密封。

5.4 空隙率(ε)的确定

对粉煤灰粉料的空隙率应予选用 0.530 ±0.005。

当按该空隙率不能将试样压至本方法 4.2.3 规定的位置时,则允许改变空隙率。空隙率的调整以 2000g 砝码(5 等砝码)将试样压实至本方法 4.2.3 规定的位置为准。

5.5 确定试样量

试样量按式(T0820-3)计算。

$$m = \rho V(1 - \varepsilon) \tag{T 0820-3}$$

式中:m——需要的试样量(g);

ρ——试样密度(g/cm³);

V——试料层体积(cm³),按本方法 4.1 测定;

 ϵ ——试料层空隙率。

5.6 试料层制备

5.6.1 将穿孔板放入透气圆筒的突缘上,用捣棒把一片滤纸放到穿孔板上,边缘放

平并压紧。称取按本方法 5.5 确定的粉煤灰量,精确至 0.001g,倒入圆筒。轻敲圆筒的边,使粉煤灰层表面平坦。再放入一片滤纸,用捣器均匀捣实试料直至捣器的支持环与圆筒顶边接触,并旋转 1~2 圈,慢慢取出捣器。

5.6.2 穿孔板上的滤纸为 ϕ 12.7mm 边缘光滑的圆形滤纸片,每次测定需用新的滤纸片。

5.7 透气试验

- **5.7.1** 将装有试料层的透气圆筒下锥面涂一层活塞油脂,然后把它插入压力计顶端锥形磨口处,旋转1~2圈。要保证紧密连接不致漏气,并不振动所制备的试料层。
- 5.7.2 打开微型电磁泵慢慢从压力计一臂中抽出空气,直到压力计内液面上升到扩大部下端时关闭阀门。当压力计内液体的弯月面下降到第3条刻度线时开始计时(图 T 0820-2),当液体的弯月面下降到第2条刻度线时停止计时,记录液面从第3条刻度线下降到第2条刻度线所需的时间t,以秒(s)为单位,并记下试验时的温度(\mathbb{C})。每次透气试验,均应重新制备试料层。

6 计算

$$S = \frac{S_s \sqrt{t}}{\sqrt{t_s}} \tag{T 0820-4}$$

如试验时温度与校准温度之差 >3℃时, 比表面积则按式(T 0820-5)计算。

$$S = \frac{S_{s} \sqrt{t} \sqrt{\eta_{s}}}{\sqrt{t_{s} \sqrt{\eta}}}$$
 (T 0820-5)

式中:S——被测试样的比表面积 (cm^2/g) ;

 S_s ——标准试样的比表面积 (cm^2/g) ;

t——被测试样试验时,压力计中液面降落测得的时间(s);

 t_s ——标准试样试验时,压力计中液面降落测得的时间(s);

 η ——被测试样试验温度下的空气黏度(μ Pa·s);

 η_s ——标准试样试验温度下的空气黏度($\mu Pa \cdot s$)。

注:√t 保留小数点后两位。

6.2 当被测试样的试料层中空隙率与标准试样试料层中空隙率不同,试验时的温度与校准温度之差≤3℃时,比表面积可按式(T 0820-6)计算。

$$S = \frac{S_{s}\sqrt{t}(1-\varepsilon_{s})\sqrt{\varepsilon^{3}}}{\sqrt{t_{s}}(1-\varepsilon)\sqrt{\varepsilon_{s}^{3}}}$$
 (T 0820-6)

如试验时温度与校准温度之差 >3℃时, 比表面积则按式(T0820-7) 计算。

$$S = \frac{S_{s}\sqrt{t}(1-\varepsilon_{s})\sqrt{\varepsilon^{3}}\sqrt{\eta_{s}}}{\sqrt{t_{s}}(1-\varepsilon)\sqrt{\varepsilon_{s}^{3}}\sqrt{\eta}}$$
 (T 0820-7)

式中: ε ——被测试样试料层中的空隙率;

 ε 。——标准试样试料层中的空隙率。

6.3 当被测试样的密度和空隙率均与标准样品不同,试验时温度与校准温度之差 ≤ 3℃时,比表面积可按式(T 0820-8)计算。

$$S = \frac{S_{s}\sqrt{t(1-\varepsilon_{s})}\sqrt{\varepsilon^{3}}\rho_{s}}{\rho\sqrt{t_{s}}(1-\varepsilon)\sqrt{\varepsilon_{s}^{3}}}$$
 (T 0820-8)

如试验时温度与校准温度之差 \geq 3°时,比表面积则按式(T0820-9)计算。

$$S = \frac{S_{s}\sqrt{T}(1-\varepsilon_{s})\sqrt{\varepsilon^{3}}\rho_{s}\sqrt{\eta_{s}}}{\sqrt{T_{s}}(1-\varepsilon)\sqrt{\varepsilon_{s}^{3}}\rho\sqrt{\eta}}$$
(T 0820-9)

式中: ρ —被测试样的密度(g/cm^3);

 ρ 。——标准试样的密度(g/cm³)。

7 结果整理

粉煤灰比表面积应由两次透气试验结果的平均值确定,计算结果保留至 10cm²/g。 如两次试验结果相差 2% 以上,则应重新试验。

8 报告

试验报告应包括以下内容:

- (1)原材料的品种、规格和产地;
- (2)试验日期及时间:
- (3)仪器设备的名称、型号及编号;
- (4)环境温度和湿度:
- (5)粉煤灰试样的比表面积;
- (6)执行标准;
- (7)需要说明的其他内容。

条文说明

本方法和 GB 8074—2008(neq ASTM C204:1981)等效。本方法中勃氏仪要求参照 JC/T 956—
— 65 —

2005。粉煤灰比表面积是指单位质量的粉煤灰粉末所具有的总面积,以 cm²/g 表示。其原理是根据一定量的空气通过具有一定空隙率和固定厚度的粉煤灰层时,所受阻力不同而引起流速的变化来测定粉煤灰的比表面积。在一定空隙率的粉煤灰层中,孔隙的大小和数量是颗粒尺寸的函数,同时也决定了通过料层的气流速度。

测定比表面积应注意以下几个方面:

- (1)试样捣实:由于试料层内空隙分布均匀程度对比表面积结果有影响,因此捣实试样应按规定统一操作。
 - (2)空隙率大小:在测定需要相互比较的试料时,空隙率不宜改变太多。
 - (3)确保勃氏仪各部分接头应保持紧密。

勃氏仪分手动和自动两种。当同一粉煤灰用手动勃氏仪和自动勃氏仪测定的结果有争议时,以手动勃氏仪测定结果为准。

在不同温度下,水银密度、空气黏度 η 和 $\sqrt{\eta}$ 见表 T 0820-1。

温度(℃) 水银密度(g/cm³) 空气黏度 η(Pa·s) $\sqrt{\eta}$ 8 13.58 0.000 174 9 0.0132210 13.57 0.000 175 9 0.013 26 12 13.57 0.000 176 8 0.013 30 14 13.56 0.000 177 8 0.013 33 16 13.56 0.000 178 8 0.013 37 13.55 18 0.000 179 8 0.013 41 20 13.55 0.000 180 8 0.013 45 22 13.54 0.000 181 8 0.013 48 24 13.54 0.000 182 8 0.013 52 26 13.53 0.000 183 7 0.013 55 28 13.53 0.000 184 7 0.013 59 30 13.52 0.000 185 7 0.013 63 13.52 0.000 186 7 32 0.013 66 34 13.51 0.000 187 6 0.013 70

表 T 0820-1 不同温度下水银密度、空气黏度 η 和 $\sqrt{\eta}$

4 无机结合料稳定材料的取样、成型和养生试验

T 0841—2009 无机结合料稳定材料取样方法

1 适用范围

本方法适用于无机结合料稳定材料室内试验、配合比设计以及施工过程中的质量抽检等。本方法规范了无机结合料及稳定材料的现场取样操作。

2 分料

可用下列方法之一将整个样品缩小到每个试验所需材料的合适质量。

2.1 四分法

- 2.1.1 需要时应加清水使主样品变湿。充分拌和主样品:在一块清洁、平整、坚硬的表面上将试料堆成一个圆锥体,用铲翻动此锥体并形成一个新锥体,这样重复进行3次。在形成每一个锥体堆时,铲中的料要放在锥顶,使滑到边部的那部分料尽可能分布均匀,使锥体的中心不移动。
- **2.1.2** 将平头铲反复交错垂直插入最后一个锥体的顶部,使锥体顶变平,每次插入后提起铲时不要带有试料。沿两个垂直的直径,将已变成平顶的锥体料堆分成四部分,尽可能使这四部分料的质量相同。
- **2.1.3** 将对角的一对料(如一、三象限为一对,二、四象限为另一对)铲到一边,将剩余的一对料铲到一块。重复上述拌和以及缩小的过程,直到达到要求的试样质量。

2.2 分料器法

如果集料中含有粒径 2.36mm 以下的细料,材料应该是表面干燥的。将材料充分拌和后通过分料器,保留一部分,将另一部分再次通过分料器。这样重复进行,直到将原样品缩小到需要的质量。

3 料堆取料

在料堆的上部、中部和下部各取一份试样,混合后按四分法分料取样。

4 试验室分料

- 4.1 目标配合比阶段各种石料应逐级筛分,然后按设定级配进行配料。
- **4.2** 生产配合比阶段可采用四分法分料,且取料总质量应大于分料取样后每份质量的 4~8 倍。
- 5 施工过程中混合料取样
- **5.1** 在进行混合料验证时,宜在摊铺机后取料,且取料应分别来源于3~4台不同的料车,然后混合到一起进行四分法取样,进行无侧限抗压强度成型及试验。
- **5.2** 在评价施工离散性时,宜在施工现场取料。应在施工现场的不同位置按随机取样原则分别取样品,对于结合料剂量还需要在同一位置的上层和下层分别取样,试样应单独成型。

条文说明

取样分两种情况:一种情况是样品能代表一个大的总体的平均情况。此时,所取原材料应与施工现场所用的材料相同,而且材料的特性和颗粒组成等也要能代表施工现场所用的材料。例如,施工前取样做混合料的组成设计、混合料的强度试验和回弹模量试验以及测定石灰的有效钙和氧化镁含量等。为此,需从料场或料堆的许多不同位置分别取部分样品,然后将这些小样品混合成一个样品。另一种情况是样品只代表材料总体的很小部分,通过一系列小样品来研究材料性质的变异性。例如,施工过程中取样做混合料的强度试验,测定混合料中水泥或石灰的剂量等。为此,对于后一目的,一般在施工现场摊铺机摊铺宽度范围内左、中、右三处取料,用做强度和回弹模量试验的混合料样品应在现场压实结束后整平时取。取回的样品应及时成型,在制作试件时应保持原有状态,不再进行任何加工。

T 0804—1994 无机结合料稳定材料击实试验方法

1 适用范围

- 1.1 本方法适用于在规定的试筒内,对水泥稳定材料(在水泥水化前)、石灰稳定材料及石灰(或水泥)粉煤灰稳定材料进行击实试验,以绘制稳定材料的含水量一干密度关系曲线,从而确定其最佳含水量和最大干密度。
 - 1.2 试验集料的公称最大粒径官控制在37.5mm 以内(方孔筛)。
 - 1.3 试验方法类别。本试验方法分三类,各类击实方法的主要参数列于表 T 0804-1。

	锤的	锤击面	**		试 筒 尺 寸			与日本土	平均单位	容许最大
类别	质量	直径	落高 (cm)	内径(cm)	高(cm)	容积(cm³)	锤击层数	毎层锤击 次数	击实功	公称粒径
	(kg)	(cm)	(cm)	MAE(cm)	南(cm)	谷枳(cm)			(1)	(mm)
甲	4.5	5.0	45	10.0	12.7	997	5	27	2. 687	19.0
Z	4.5	5.0	45	15.2	12.0	2 177	5	59	2.687	19.0
丙	4.5	5.0	45	15.2	12.0	2 177	3	98	2.677	37.5

表 T 0804-1 试验方法类别表

2 仪器设备

- **2.1** 击实筒:小型,内径 100mm、高 127mm 的金属圆筒,套环高 50mm,底座;大型,内径 152mm、高 170mm 的金属圆筒,套环高 50mm,直径 151mm 和高 50mm 的筒内垫块,底座。
- 2.2 多功能自控电动击实仪:击锤的底面直径 50mm,总质量 4.5kg。击锤在导管内的总行程为 450mm。可设置击实次数,并保证击锤自由垂直落下,落高应为 450mm,锤迹均匀分布于试样面。
 - 2.3 电子天平:量程 4 000g,感量 0.01g。
 - **2.4** 电子天平:量程 15kg,感量 0.1g。
 - **2.5** 方孔筛:孔径 53mm、37.5mm、26.5mm、19mm、4.75mm、2.36mm 的筛各 1 个。
 - **2.6** 量筒:50mL、100mL 和 500mL 的量筒各1 个。
- **2.7** 直刮刀:长 200~250mm、宽 30mm 和厚 3mm, 一侧开口的直刮刀, 用以刮平和修 饰粒料大试件的表面。
 - **2.8** 刮土刀:长 $150 \sim 200 \, \text{mm}$ 、宽约 $20 \, \text{mm}$ 的刮刀,用以刮平和修饰小试件的表面。
 - **2.9** 工字形刮平尺:30mm×50mm×310mm,上下两面和侧面均刨平。
 - **2.10** 拌和工具:约 400mm×600mm×70mm 的长方形金属盘、拌和用平头小铲等。
 - 2.11 脱模器。
 - 2.12 测定含水量用的铝盒、烘箱等其他用具。

2.13 游标卡尺。

3 试验准备

- **3.1** 将具有代表性的风干试料(必要时,也可以在 50℃烘箱内烘干)用木锤捣碎或用木碾碾碎。土团均应破碎到能通过 4.75 mm 的筛孔。但应注意不使粒料的单个颗粒破碎或不使其破碎程度超过施工中拌和机械的破碎率。
- **3.2** 如试料是细粒土,将已破碎的具有代表性的土过 4.75mm 筛备用(用甲法或乙法做试验)。
- 3.3 如试料中含有粒径大于 4.75 mm 的颗粒,则先将试料过 19 mm 筛;如存留在 19 mm 筛上的颗粒的含量不超过 10%,则过 26.5 mm 筛,留作备用(用甲法或乙法做试验)。
- 3.4 如试料中粒径大于 19mm 的颗粒含量超过 10%,则将试料过 37.5mm 筛;如果存留在 37.5mm 筛上的颗粒的含量不超过 10%,则过 53mm 的筛备用(用丙法试验)。
 - 3.5 每次筛分后,均应记录超尺寸颗粒的百分率P。
- 3.6 在预定做击实试验的前一天,取有代表性的试料测定其风干含水量。对于细粒土,试样应不少于100g;对于中粒土,试样应不少于1000g;对于粗粒土的各种集料,试样应不少于2000g。
 - 3.7 在试验前用游标卡尺准确测量试模的内径、高和垫块的厚度,以计算试筒的容积。

4 试验步骤

4.1 准备工作

在试验前应将试验所需要的各种仪器设备准备齐全,测量设备应满足精度要求;调试击实仪器,检查其运转是否正常。

4.2 甲法

- **4.2.1** 将已筛分的试样用四分法逐次分小,至最后取出约 10~15kg 试料。再用四分法将已取出的试料分成 5~6 份,每份试料的干质量为 2.0g(对于细粒土)或 2.5kg(对于各种中粒土)。
 - **4.2.2** 预定 5~6 个不同含水量,依次相差 0.5%~1.5%^①,且其中至少有两个大于

和两个小于最佳含水量。

注①:对于中、粗粒土,在最佳含水量附近取 0.5%,其余取 1%。对于细粒土,取 1%,但对于黏土,特别是重黏土,可能需要取 2%。

4.2.3 按预定含水量制备试样。将1份试料平铺于金属盘内,将事先计算得的该份试料中应加的水量均匀地喷洒在试料上,用小铲将试料充分拌和到均匀状态(如为石灰稳定材料、石灰粉煤灰综合稳定材料、水泥粉煤灰综合稳定材料和水泥、石灰综合稳定材料,可将石灰、粉煤灰和试料一起拌匀),然后装入密闭容器或塑料口袋内浸润备用。

浸润时间要求:黏质土 12~24h,粉质土 6~8h,砂类土、砂砾土、红土砂砾、级配砂砾等可以缩短到 4h 左右,含土很少的未筛分碎石、砂砾和砂可缩短到 2h。浸润时间一般不超过 24h。

应加水量可按式(T0804-1)计算。

$$m_{\rm w} = \left(\frac{m_{\rm n}}{1 + 0.01w_{\rm n}} + \frac{m_{\rm c}}{1 + 0.01w_{\rm c}}\right) \times 0.01w$$
$$-\frac{m_{\rm n}}{1 + 0.01w_{\rm n}} \times 0.01w_{\rm n} - \frac{m_{\rm c}}{1 + 0.01w_{\rm c}} \times 0.01w_{\rm c} \tag{T 0804-1}$$

式中: m_w ——混合料中应加的水量(g);

 m_n ——混合料中素土(或集料)的质量(g),其原始含水量为 w_n ,即风干含水量(%);

 m_s ——混合料中水泥或石灰的质量(g),其原始含水量为 w_s (%);

w——要求达到的混合料的含水量(%)。

- **4.2.4** 将所需要的稳定剂水泥加到浸润后的试样中,并用小铲、泥刀或其他工具充分拌和到均匀状态。水泥应在土样击实前逐个加入。加有水泥的试样拌和后,应在 1h 内完成下述击实试验。拌和后超过 1h 的试样,应予作废(石灰稳定材料和石灰粉煤灰稳定材料除外)。
- 4.2.5 试筒套环与击实底板应紧密联结。将击实筒放在坚实地面上,用四分法取制备好的试样400~500g(其量应使击实后的试样等于或略高于筒高的1/5)倒入筒内,整平其表面并稍加压紧,然后将其安装到多功能自控电动击实仪上,设定所需锤击次数,进行第1层试样的击实。第1层击实完后,检查该层高度是否合适,以便调整以后几层的试样用量。用刮土刀或螺丝刀将已击实层的表面"拉毛",然后重复上述做法,进行其余4层试样的击实。最后一层试样击实后,试样超出筒顶的高度不得大于6mm,超出高度过大的试件应该作废。
- **4.2.6** 用刮土刀沿套环内壁削挖(使试样与套环脱离)后,扭动并取下套环。齐筒顶细心刮平试样,并拆除底板。如试样底面略突出筒外或有孔洞,则应细心刮平或修补。

最后用工字形刮平尺齐筒顶和筒底将试样刮平。擦净试筒的外壁,称其质量 m_1 。

4.2.7 用脱模器推出筒内试样。从试样内部从上至下取两个有代表性的样品(可将脱出试件用锤打碎后,用四分法采取),测定其含水量,计算至 0.1%。两个试样的含水量的差值不得大于 1%。所取样品的数量见表 T 0804-2(如只取一个样品测定含水量,则样品的质量应为表列数值的两倍)。擦净试筒,称其质量 m_2 。

公称最大粒径(mm)	样品质量(g)
2.36	约 50
19	约 300
37.5	约1000

表 T 0804-2 测稳定材料含水量的样品质量

烘箱的温度应事先调整到 110℃左右,以使放入的试样能立即在 105~110℃的温度下烘干。

4.2.8 按本方法 4.2.3~4.2.7 的步骤进行其余含水量下稳定材料的击实和测定工作。凡已用过的试样,一律不再重复使用。

4.3 乙法

在缺乏内径 10cm 的试筒时,以及在需要与承载比等试验结合起来进行时,采用乙法进行击实试验。本法更适宜于公称最大粒径达 19mm 的集料。

- **4.3.1** 将已过筛的试料用四分法逐次分小,至最后取出约 30kg 试料。再用四分法将所取的试料分成 5~6 份,每份试料的干质量约为 4.4kg(细粒土)或 5.5kg(中粒土)。
- **4.3.2** 以下各步的做法与本方法 4.2.2~4.2.8 相同,但应该先将垫块放入筒内底板上,然后加料并击实。所不同的是,每层需取制备好的试样约 900g(对于水泥或石灰稳定细粒土)或 1 100g(对于稳定中粒土),每层的锤击次数为 59 次。

4.4 丙法

- **4.4.1** 将已过筛的试料用四分法逐次分小,至最后取约 33kg 试料。再用四分法将所取的试料分成 6份(至少要 5份),每份质量约 5.5kg(风干质量)。
- **4.4.2** 预定 $5 \sim 6$ 个不同含水量,依次相差 $0.5\% \sim 1.5\%$ 。在估计最佳含水量左右可只差 $0.5\% \sim 1\%$ 。

注:①对于水泥稳定类材料,在最佳含水量附近取 0.5%;对于石灰、二灰稳定类材料,根据具体情况在最佳含水量附近取 1%。

- **4.4.3** 同 4.2.3。
- **4.4.4** 同 4.2.4。
- 4.4.5 将试筒、套环与夯击底板紧密地联结在一起,并将垫块放在筒内底板上。击实筒应放在坚实地面上,取制备好的试样 1.8kg 左右[其量应使击实后的试样略高于(高出 1~2mm)筒高的 1/3]倒入筒内,整平其表面,并稍加压紧。然后将其安装到多功能自控电动击实仪上,设定所需锤击次数,进行第 1 层试样的击实。第 1 层击实完后检查该层的高度是否合适,以便调整以后两层的试样用量。用刮土刀或螺丝刀将已击实的表面"拉毛",然后重复上述做法,进行其余两试样的击实。最后一层试样击实后,试样超出试筒顶的高度不得大于 6mm。超出高度过大的试件应该作废。
- **4.4.6** 用刮土刀沿套环内壁削挖(使试样与套环脱离),扭动并取下套环。齐筒顶细心刮平试样,并拆除底板,取走垫块。擦净试筒的外壁,称其质量 m_1 。
- **4.4.7** 用脱模器推出筒内试样。从试样内部由上至下取两个有代表性的样品(可将脱出试件用锤打碎后,用四分法采取),测定其含水量,计算至 0.1%。两个试样的含水量的差值不得大于 1%。所取样品的数量应不少于 700g,如只取一个样品测定含水量,则样品的数量应不少于 1400g。烘箱的温度应事先调整到 110% 左右,以使放入的试样能立即在 $105 \sim 110\%$ 的温度下烘干。擦净试筒,称其质量 m_2 。
- **4.4.8** 按本方法 4.4.3~4.4.7 进行其余含水量下稳定材料的击实和测定。凡已用过的试料,一律不再重复使用。

5 计算

5.1 稳定材料湿密度计算

按式(T0804-2)计算每次击实后稳定材料的湿密度。

$$\rho_{\rm w} = \frac{m_1 - m_2}{V} \tag{T 0804-2}$$

式中: $\rho_{\rm w}$ ——稳定材料的湿密度(g/cm³);

 m_1 ——试筒与湿试样的总质量(g);

 m_2 ——试筒的质量(g);

V——试筒的容积(cm³)。

5.2 稳定材料干密度计算

按式(T0804-3)计算每次击实后稳定材料的干密度。

$$\rho_{\rm d} = \frac{\rho_{\rm w}}{1 + 0.01 w} \tag{T 0804-3}$$

式中: ρ_d ——试样的干密度(g/cm^3); w——试样的含水量(%)。

5.3 制图

- **5.3.1** 以干密度为纵坐标、含水量为横坐标,绘制含水量一干密度曲线。曲线必须为凸形的,如试验点不足以连成完整的凸形曲线,则应该进行补充试验。
- **5.3.2** 将试验各点采用二次曲线方法拟合曲线,曲线的峰值点对应的含水量及干密度即为最佳含水量和最大干密度。

5.4 超尺寸颗粒的校正

当试样中大于规定最大粒径的超尺寸颗粒的含量为 5% ~ 30% 时,按下列各式对试验所得最大干密度和最佳含水量进行校正(超尺寸颗粒的含量小于 5% 时,可以不进行校正)^①。

(1)最大干密度按式(T0804-4)校正。

$$\rho'_{dm} = \rho_{dm} (1 - 0.01p) + 0.9 \times 0.01pG'_{a}$$
 (T 0804-4)

式中: ρ'_{dm} — 校正后的最大干密度(g/cm^3);

 ρ_{dm} ——试验所得的最大干密度(g/cm³);

p——试样中超尺寸颗粒的百分率(%);

 G'_{a} ——超尺寸颗粒的毛体积相对密度。

(2)最佳含水量按式(T0804-5)校正。

$$w_0' = w_0 (1 - 0.1p) + 0.01pw_a$$
 (T 0804-5)

式中:w/--校正后的最佳含水量(%);

 w_0 ——试验所得的最佳含水量(%);

p——试样中超尺寸颗粒的百分率(%);

 w_{\bullet} ——超尺寸颗粒的吸水量(%)。

注①:超尺寸颗粒的含量少于5%时,它对最大干密度的影响位于平行试验的误差范围内。

6 结果整理

6.1 应做两次平行试验,取两次试验的平均值作为最大干密度和最佳含水量。两次重复性试验最大干密度的差不应超过 0.05g/cm³(稳定细粒土)和 0.08g/cm³(稳定中粒土和粗粒土),最佳含水量的差不应超过 0.5%(最佳含水量小于 10%)和 1.0%(最佳含水量大于 10%)。超过上述规定值,应重做试验,直到满足精度要求。

6.2 混合料密度计算应保留小数点后 3 位有效数字,含水量应保留小数点后 1 位有效数字。

7 报告

试验报告应包括以下内容:

- (1)试样的最大粒径、超尺寸颗粒的百分率;
- (2) 无机结合料类型及剂量;
- (3) 所用试验方法类别;
- (4)最大干密度(g/cm³);
- (5)最佳含水量(%),并附击实曲线。

8 记录

工程夕称

本试验的记录格式见表 T 0804-3。

表 T 0804-3 稳定材料击实试验记录表 _____ 结合料含水量(%)_____

	工作机业		コープー 						
	试样编号		试验方法						
	混合料名称								
	结合料剂量(%)		校 核 者						
	集料含水量(%)		试验日期						
	试 验 序 号	1	2	3	4	5	6		
	加水量(g)								
	筒 + 湿试样的质量(g)								
干	筒的质量(g)								
干密度	湿试样质量(g)								
	湿密度(g/cm³)								
	干密度(g/cm³)								
	盒号								
	盒 + 湿试样的质量(g)								
	盒 + 干试样的质量(g)								
含	盒的质量(g)								
含水量	水的质量(g)								
	干试样的质量(g)								
	含水量(%)								
	平均含水量(%)								

条文说明

预定含水量的确定,对于细粒土,可参照其塑限估计素土的最佳含水量。一般其最佳含水量较塑限约小3%~10%,对于砂类土较塑限值约小3%,对于黏质土较塑限值约小6%~10%。天然砂砾土、

级配集料等的最佳含水量与集料中细土的含量和塑性指数有关,一般在5%~12%范围内。对于细土少的、塑性指数为0的未筛分碎石,其最佳含水量接近5%。对于细土偏多的、塑性指数较大的砂砾土,其最佳含水量在10%左右。水泥稳定材料的最佳含水量与素土接近,石灰、粉煤灰稳定材料的最佳含水量可能较素土大1%~3%。

水泥遇水就要开始水化作用。从加水拌和到进行击实试验间隔的时间愈长,水泥的水化作用和结硬程度就愈大。它会影响水泥混合料所能达到的密实度,间隔时间愈长,影响愈大。例如,一种水泥砂砾混合料加水拌和后立即进行击实试验,得其干密度为 2.37g/cm³;拌和后间隔 1h 进行同样的击实试验,得干密度为 2.30g/cm³;间隔 4h,所得干密度为 2.18g/cm³;间隔 8h,所得干密度只有 2.10g/cm³。间隔时间从 1~8h,所得干密度分别只有无间隔时间的 97%、92%、89%。因此,加有水泥的试样拌和后应在 1h 内完成击实试验。据施工经验,石灰土(特别是稳定黏土类土)击实最大干密度在 7d 以内其数值是逐渐减小的,因此应注意击实试验的时间。

不管是采用直径 10cm 还是直径 15cm 的试筒,击实所用的锤都是锤击面直径为 5cm。对于直径 10cm 的试筒,应在筒内沿筒壁转圈击实。对于直径 15cm 的试筒,在筒内沿壁锤击一圈(约 6 次)后应到筒中心锤击一次,然后再沿筒壁锤击一圈并在筒中心锤击一次,如此反复进行,直到要求的总次数。采用符合要求的电动击实仪,能严格保持上述条件。手工击实时,还应注意保持击锤自由垂直落下和每次落高均为 45cm。

对于含有砾石或碎石颗粒的中粒土特别是粗粒土,难于刮平。在整平过程中,可允许某些大颗粒露出表面,但同时要取出某些颗粒,使表面有空洞或凹陷,这些空洞或凹陷的体积尽可能与表面突出的大颗粒体积相等。根据同一种混合料多次击试验所得的n个最大干密度和最佳含水量各自的标准差S,用 $2\sqrt{2}S$ 得出此允许误差。它表示两次击试验的结果之差只有5%的概率会大于规定的允许误差。

T 0842-2009 无机结合料稳定材料振动压实试验方法

1 适用范围

本方法适用于在室内对水泥、石灰、石灰粉煤灰稳定粒料土基层材料进行振动压实试验,以确定这些材料在振动压实条件下的含水量——干密度曲线,确定其最佳含水量和最大干密度。

2 仪器设备

- **2.1** 钢模:内径 152mm、高 170mm、壁厚 10mm;钢模套环:内径 152mm、高 50mm、壁厚 10mm;筒内垫块:直径 151mm、厚 20mm;钢模底板:直径 300mm、厚 10mm。以上各部件如图 T 0842-1 所示,可用螺栓固定成一体。
- **2.2** 振动压实机:如图 T 0842-2 所示,配有 φ150mm 的压头,静压力、激振力和频率可调。
 - 2.3 电子天平:量程 15kg,感量 0.1g;量程 4 000g,感量 0.01g。

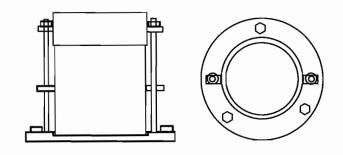


图 T 0842-1 钢模、钢模套环及钢模底板示意图

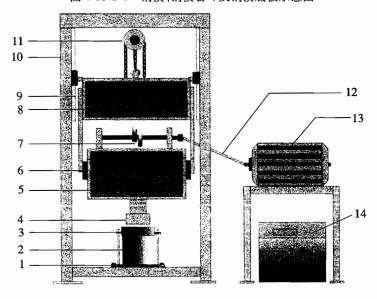


图 T 0842-2 振动压实机示意图

1-钢模底盘;2-钢模;3-钢模套环;4-压头;5-下车系统;6-减振块;7-偏心块;8-上车系统;9-导向柱;10-机架;11-手动葫芦;12-传动轴;13-电动机;14-变频器

- **2.4** 方孔筛:孔径 37.5mm、31.5mm、26.5mm、19mm、9.5mm、4.75mm、2.36mm、0.6mm 以及 0.075mm 的标准筛各 1 个。
 - 2.5 量筒:50mL、100mL 和 500mL 的量筒各 1 个。
- 2.6 直刮刀:长200~250mm、宽30mm、厚3mm,一侧开口的直刮刀,用以刮平和修饰 粒料大试件的表面。
 - 2.7 工字形刮平尺:30mm×50mm×310mm,上下两面和侧面均刨平。
 - 2.8 拌和工具:约400mm×600mm×70mm的长方形金属盘、拌和用平头小铲等。
 - 2.9 脱模器。

- 2.10 测定含水量用的铝盒、烘箱等其他用具。
- 2.11 用于固紧试模螺栓的扳手、钳子,用于调节偏心块夹角的小榔头等。

3 试验准备

- **3.1** 对集料进行筛分,按预定级配配好集料。如果集料的最大公称粒径不大于37.5mm,则直接备料;如果大于37.5mm 的粒径含量超过10%,则过37.5mm 筛备用,筛分后记录超尺寸颗粒的百分率。
- 3.2 在预定做击实试验的前一天,取有代表性的试料测定其风干含水量。对于细料,试样应不少于 100g;对于中粒料,试样应不少于 1 000g;对于粗粒料,试样应不少于 2 000g。同时测定石灰和水泥的含水量。

4 试验步骤

4.1 调节振动压实机上下车的配重块数、偏心块夹角和变频器的频率。对无机结合料稳定粒料一般选用面压力约为 $0.1 \, \mathrm{MPa}^{\odot}$,激振力约 $6.800 \, \mathrm{N}^{\odot}$,振动频率为 $28 \sim 30 \, \mathrm{Hz}$ 的振实条件。

注①:振动压实机依照振动压路机的压实原理设计,分为上车和下车系统,下车质量/整车质量应在 0.6 左右。一般选用上车配重为 3 块、下车配重为 6 块(上车配重块约 4.5kg/个,下车配重块约 5.5kg/个),也可以根据试验确定。

注②:该值为计算值,采用偏心块夹角为 60°,振动频率为 28~30Hz 时计算获得,实测激振力与被压实材料有关,一般大于该值,也可以根据试验确定。

- **4.2** 将准备好的各种粗、细集料按照预定的混合料级配配制 5~6 份,每份试料的干质量约为 5.5~6.5kg。
- **4.3** 预定 5~6 个不同含水量,依次相差 1%~2%,且其中至少有两个大于和两个小于最佳含水量。
 - 4.4 按预定含水量制备试样。

将1份试料平铺于金属盘内,将事先计算得到的该份试料中应加的水量均匀地喷洒 在试料上,用小铲将试料充分拌和到均匀状态,然后装入密闭容器或塑料口袋内浸润 备用。

应加水量可按式(T0842-1)计算。

$$m_{w} = \left(\frac{m_{n}}{1 + 0.01w_{n}} + \frac{m_{c}}{1 + 0.01w_{c}}\right) \times 0.01w - \frac{m_{n}}{1 + 0.01w_{n}} \times 0.01w_{n} - \frac{m_{c}}{1 + 0.01w_{c}} \times 0.01w_{c}$$
(T 0842-1)

式中: m_w ——混合料中应加的水量(g);

- m_n ——混合料中集料的质量(g),其原始含水量为 w_n ,即风干含水量(%);
- m_c ——混合料中水泥或石灰的质量(g),其原始含水量为 w_c (%);
- w——要求达到的混合料的含水量(%)。
- **4.5** 将所需要的结合料,如水泥加到浸润后的试料中,并用小铲、泥刀或其他工具充分拌和到均匀状态。加有水泥的试料拌和后,应在 1h 内完成振实试验。拌和后超过 1h 的试样,应予作废(石灰稳定和石灰粉煤灰稳定除外)。
- **4.6** 将钢模套环、钢模及钢模底板紧密联结,然后将其放在坚实地面上。将拌和好的混合料按四分法分成 4 份,将对角的两份依次倒入筒内,一边倒一边用直径 2cm 左右的木棒插捣。混合料应分两次装完,整平其表面并稍加压紧,然后将钢模连同混合料放在振动压实机的钢模底板上,用螺栓将钢模底板与振动压实机底板固定在一起。
- **4.7** 将振动压头对准钢模后,拉动手动葫芦放下振动器,使振动压头与钢模内的混合料紧密接触,然后取下手动葫芦吊钩,放好手动葫芦拉链。检查振动压实机上的螺栓及相关联结处,确定没有任何物品放在振动压实机上。
- **4.8** 启动振动压实机开关,开始振动压实。仔细观察振实压实情况,在振动压头回弹 跳起时关闭机器,记下振动压实时间。
- **4.9** 用手动葫芦拉起振动压头。用刮土刀或螺丝刀将已振实层的表面拉毛,然后将剩下的混合料加入试模中,一边倒一边用直径 2cm 左右的木棒插捣,整平其表面并稍加压紧,重复上述振动试验。
- **4.10** 振动完毕后,用手动葫芦拉起振动压头。松开钢模底板的螺栓,将钢模连同经过振实的混合料一起卸下。用刮土刀沿套环内壁稍稍挖松振实后的混合料,以便使混合料与套环脱离,松开螺栓后小心扭动并取下钢模套环,然后检查钢模内振实后的材料高度是否合适。经过振实的混合料不能低于钢模的边缘,同时,振实后的混合料也不能高出钢模边缘 10mm,否则作废。
- **4.11** 齐钢模顶用刮土刀仔细刮平混合料,如混合料顶面略突出筒外或有孔洞,则应仔细刮平或修补。拆除底板,擦净钢模外壁,称取钢模与混合料的质量 m_1 。
- **4.12** 用脱模器推出钢模内混合料。用锤将经过振实的混合料打碎后,从其中心部分取 2 000 ~ 2 500g 的混合料,装入金属盆中。将金属盆连同混合料一起放入 110 ℃ 的烘箱中烘干 12h,测定其含水量,并计算相应的干密度。擦净试筒,称其质量 m_2 。

5 计算

5.1 稳定材料湿密度计算

按式(T0842-2)计算每次击实后稳定材料的湿密度。

$$\rho_{\rm w} = \frac{m_1 - m_2}{V} \tag{T 0842-2}$$

式中: ρ_{w} ——稳定材料的湿密度(g/cm³);

 m_1 ——试筒与湿试样的合质量(g);

 m_2 ——试筒的质量(g);

- V──試筒的容积(cm³)。

5.2 稳定材料干密度计算

按式(T0842-3)计算每次击实后稳定材料的干密度。

$$\rho_{\rm d} = \frac{\rho_{\rm w}}{1 + 0.01 w} \tag{T 0842-3}$$

式中: ρ_d ——稳定材料的干密度(g/cm³);

 $\rho_{\rm w}$ ——稳定材料的湿密度(g/cm³);

w——稳定材料的含水量(%)。

5.3 制图

- **5.3.1** 以干密度为纵坐标、含水量为横坐标,在普通直角坐标纸上绘制干密度一含水量关系曲线。凸形曲线顶点的纵横坐标分别为稳定材料的最大干密度和最佳含水量。
 - 5.3.2 如试验点不足以连成完整的驼峰形曲线,则应该进行补充试验。
- **5.3.3** 按上述方法测定并计算不同含水量下的试件的干密度,绘制干密度一含水量关系曲线。确定最佳含水量、最大干密度和最佳压实状态下的振动压实时间。

6 结果整理

- **6.1** 混合料密度计算应保留小数点后 3 位有效数字,含水量应保留小数点后 1 位有效数字。
- **6.2** 应做两次平行试验,两次试验最大干密度的差不应超过 0.05g/cm³(稳定细粒土)和 0.08g/cm³(稳定中粒土和粗粒土),最佳含水量的差不应超过 0.5%(最佳含水量小于 10%)和 1.0%(最佳含水量大于 10%)。

7 报告

试验报告应包括以下内容:

- (1)试样的最大粒径、超尺寸颗粒的百分率;
- (2)水泥的种类和强度等级,或石灰中有效氧化钙和氧化镁的含量(%);
- (3) 无机结合料类型及剂量;
- (4) 所用振动压实机的各参数;
- (5)最大干密度(g/cm³);
- (6)最佳含水量(%),并附振实曲线。

8 记录

本试验的记录格式见表 T 0842-1。

表 T 0842-1 稳定材料振动压实试验记录表

	工程名称	结合料含水量(%)							
	试样编号		试验方法						
	混合料名称	试验者							
	结合料剂量(%)								
	集料含水量(%)		试验日期						
	振动参数:频率	面压力		激技	辰力		_		
	试 验 序 号	1	2	3	4	5	6		
	加水量(g)								
	筒 +湿试样的质量(g)								
于	筒的质量(g)								
干密度	湿试样质量(g)								
	湿密度(g/cm³)								
	干密度(g/cm³)								
	盒号								
	盒 +湿试样的质量(g)								
	盒 + 干试样的质量(g)								
含水量	盒的质量(g)								
量	水的质量(g)								
	干试样的质量(g)								
	含水量(%)								
	平均含水量(%)								
	备注(振动状态)								

条文说明

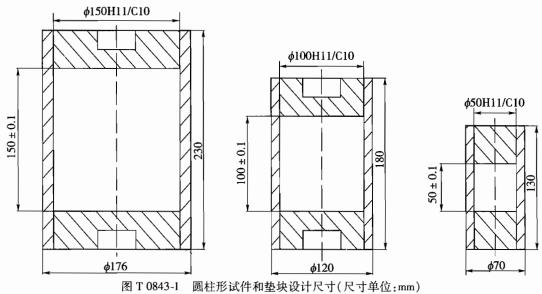
本方法适用于粗集料含量较大的稳定材料。一般来说,振动压实试验确定的最佳含水量小于击实 试验确定的最佳含水量,最大干密度大于击实试验确定的最大干密度。由于还未建立起振动压实试验 测试的干密度与击实试验和工程现场振动压实效果的相关关系,因此该试验方法主要用于室内研究。

对于水泥稳定类材料,从加水拌和到进行压实试验间隔的时间愈长,水泥的水化作用和结硬程度就愈大,因此要求以水泥为结合料的试验拌和后要在1h内完成试验。

由于振动容易对仪器造成损伤,在振动压实前需仔细检查仪器螺栓的紧固程度,操作时一定要遵守操作规程,不可疏忽大意。振动压实过程较短,应认真观察振动压实机压头是否达到跳起的状态,不要使振动压实机长时间在回弹跳起状态运行。

由于振动压实中水分的影响作用显著,高含水量下压头回弹跳起现象很难出现,振动时间太长会使试料大量挤出。因此,确定不同含水量下的压实效果时,中等或较低含水量下以压头回弹跳起为控制条件;高含水量下以试料挤出为停止振动压实的控制条件。

含有砾石或碎石颗粒的中粒料特别是粗粒料难于刮平。在整平过程中可允许某些大颗粒露出表面,但同时要取出某些颗粒使表面有些空洞,尽可能使突出的体积与空洞的体积相等。



1 适用范围

本方法适用于无机结合料稳定材料的无侧限抗压强度、间接抗拉强度、室内抗压回弹模量、动态模量、劈裂模量等试验的圆柱形试件。

2 仪器设备

- **2.1** 方孔筛:孔径 53mm、37.5mm、31.5mm、26.5mm、4.75mm 和 2.36mm 的筛各 1 个。
- **2.2** 试模:细粒土,试模的直径×高 = ϕ 50mm×50mm;中粒土,试模的直径×高 = ϕ 100mm×100mm;粗粒土,试模的直径×高 = ϕ 150mm×150mm。适用于下列不同土的试模尺寸如图 T 0843-1 所示。

注: H11/C10 表示垫块和试模的配合精度。

- 2.3 电动脱模器。
- 2.4 反力架:反力为 400kN 以上。
- 2.5 液压千斤顶:200~1000kN。
- 2.6 钢板尺:量程200mm或300mm,最小刻度1mm。
- 2.7 游标卡尺:量程 200mm 或 300mm。
- 2.8 电子天平:量程 15kg,感量 0.1g;量程 4 000g,感量 0.01g。
- 2.9 压力试验机:可替代千斤顶和反力架,量程不小于2000kN,行程、速度可调。

3 试验准备

- **3.1** 试件的径高比一般为1:1,根据需要也可成型1:1.5 或1:2的试件。试件的成型根据需要的压实度水平,按照体积标准,采用静力压实法制备。
- **3.2** 将具有代表性的风干试料(必要时,可以在50℃烘箱内烘干),用木锤捣碎或用木碾碾碎,但应避免破坏粒料的原粒径。按照公称最大粒径的大一级筛,将土过筛并进行分类。
- 3.3 在预定做试验的前一天,取有代表性的试料测定其风干含水量。对于细粒土,试样应不少于100g;对于中粒土,试样应不少于1000g;对于粗粒土,试样应不少于2000g。
- **3.4** 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
- 3.5 根据击实结果,称取一定质量的风干土,其质量随试件大小而变。对 ϕ 50mm × 50mm 的试件,1 个试件约需干土 180 ~ 210g; 对于 ϕ 100mm × 100mm 的试件,1 个试件约需干土 1 700 ~ 1 900g; 对于 ϕ 150mm × 150mm 的试件,1 个试件约需干土 5 700 ~ 6 000g。 对于 ϕ 150mm × ϕ 150

对于细粒土,一次可称取6个试件的土;对于中粒土,一次宜称取一个试件的土;对于粗粒土,一次只称取一个试件的土。

3.6 将准备好的试料分别装入塑料袋中备用。

4 试验步骤

4.1 调试成型所需要的各种设备,检查是否运行正常;将成型用的模具擦拭干净,并涂

抹机油。成型中、粗粒土时,试模筒的数量应与每组试件的个数相配套。上下垫块应与试模筒相配套,上下垫块能够刚好放入试筒内上下自由移动(一般来说,上下垫块直径比试筒内径小约0.2mm)且上下垫块完全放入试筒后,试筒内未被上下垫块占用的空间体积能满足径高比为1:1的设计要求。

- **4.2** 对于无机结合料稳定细粒土,至少应该制备 6 个试件;对于无机结合料稳定中粒土和粗粒土,至少应该分别制备 9 个和 13 个试件。
- **4.3** 根据击实结果和无机结合料的配合比按式(T 0843-1)计算每份料的加水量、无机结合料的质量。
- **4.4** 将称好的土放在长方盘(约400mm×600mm×70mm)内。向土中加水拌料、闷料。石灰稳定材料、水泥和石灰综合稳定材料、石灰粉煤灰综合稳定材料、水泥粉煤灰综合稳定材料,可将石灰或粉煤灰和土一起拌和,将拌和均匀后的试料放在密闭容器或塑料袋(封口)内浸润备用。

对于细粒土(特别是黏性土),浸润时的含水量应比最佳含水量小3%;对于中粒土和粗粒土,可按最佳含水量加水^①;对于水泥稳定类材料,加水量应比最佳含水量小1%~2%。

注①:应加的水量可按式(T 0843-1)计算。

$$m_{w} = \left(\frac{m_{n}}{1 + 0.01w_{n}} + \frac{m_{c}}{1 + 0.01w_{c}}\right) \times 0.01w - \frac{m_{n}}{1 + 0.01w_{n}} \times 0.01w_{n} - \frac{m_{c}}{1 + 0.01w_{c}} \times 0.01w_{c}$$
 (T 0843-1)

式中: m_w ——混合料中应加的水量(g);

 m_n ——混合料中素土(或集料)的质量(g),其含水量为 w_n (风干含水量)(%);

 m_c ——混合料中水泥或石灰的质量(g),其原始含水量为 $w_c(\%)$ (水泥的 w_c 通常很小,也可以忽略不计);

w——要求达到的混合料的含水量(%)。

浸润时间要求为:黏质土 12~24h,粉质土 6~8h,砂类土、砂砾土、红土砂砾、级配砂砾等可以缩短到 4h 左右,含土很少的未筛分碎石、砂砾及砂可以缩短到 2h。浸润时间一般不超过 24h。

- **4.5** 在试件成型前 1h 内,加入预定数量的水泥并拌和均匀。在拌和过程中,应将预留的水(对于细粒土为 3%,对于水泥稳定类为 1%~2%)加入土中,使混合料达到最佳含水量。拌和均匀的加有水泥的混合料应在 1h 内按下述方法制成试件,超过 1h 的混合料应该作废。其他结合料稳定材料,混合料虽不受此限,但也应尽快制成试件。
 - 4.6 用反力架和液压千斤顶,或采用压力试验机制件。

将试模配套的下垫块放入试模的下部,但外露 2 cm 左右。将称量的规定数量 m_2 的稳定材料混合料分 $2 \sim 3$ 次灌入试模中,每次灌入后用夯棒轻轻均匀插实。如制取 $\phi 50 \text{mm} \times 50 \text{mm}$ 的小试件,则可以将混合料一次倒入试模中,然后将与试模配套的上垫块放入试模内,也应使其外露 2 cm 左右(即上、下垫块露出试模外的部分应该相等)。

- **4.7** 将整个试模(连同上、下垫块)放到反力架内的千斤顶上(千斤顶下应放一扁球座)或压力机上,以 1mm/min 的加载速率加压,直到上下压柱都压入试模为止。维持压力 2min。
- 4.8 解除压力后,取下试模,并放到脱模器上将试件顶出。用水泥稳定有黏结性的材料(如黏质土)时,制件后可以立即脱模;用水泥稳定无黏结性细粒土时,最好过2~4h 再脱模;对于中、粗粒土的无机结合料稳定材料,也最好过2~6h 脱模。
- **4.9** 在脱模器上取试件时,应用双手抱住试件侧面的中下部,然后沿水平方向轻轻旋转,待感觉到试件移动后,再将试件轻轻捧起,放置到试验台上。切勿直接将试件向上捧起。
- **4.10** 称试件的质量 m_2 ,小试件精确至 0.01g,中试件精确至 0.01g,大试件精确至 0.1g。然后用游标卡尺测量试件高度 h,精确至 0.1mm。检查试件的高度和质量,不满足成型标准的试件作为废件。
 - 4.11 试件称量后应立即放在塑料袋中封闭,并用潮湿的毛巾覆盖,移放至养生室。

5 计算

单个试件的标准质量:
$$m_0 = V \times \rho_{\text{max}} \times (1 + w_{\text{opt}}) \times \gamma$$
 (T 0843-2)

考虑到试件成型过程中的质量损耗,实际操作过程中每个试件的质量可增加 0~2%,即:

$$m_0' = m_0 \times (1 + \delta)$$
 (T 0843-3)

每个试件的干料(包括干土和无机结合料)总质量:
$$m_1 = \frac{m'_0}{1 + w_{out}}$$
 (T 0843-4)

每个试件中的无机结合料质量:外掺法
$$m_2 = m_1 \times \frac{\alpha}{1+\alpha}$$
 (T 0843-5)

内掺法
$$m_2 = m_1 \times \alpha$$
 (T 0843-6)

每个试件中的干土质量:
$$m_3 = m_1 - m_2$$
 (T 0843-7)

每个试件中的加水量:
$$m_{\rm w} = (m_2 + m_3) \times w_{\rm opt}$$
 (T 0843-8)

验算:
$$m_0' = m_2 + m_3 + m_w$$
 (T 0843-9)

式中: V——试件体积(cm³);

 w_{out} ——混合料最佳含水量(%);

 ρ_{max} ——混合料最大干密度 (g/cm^3) ;

γ——混合料压实度标准(%);

*m*₀、*m*′₀——混合料质量(g);

 m_1 ——干混合料质量(g);

 m_2 ——无机结合料质量(g);

m₃——干土质量(g);

δ——计算混合料质量的冗余量(%);

α——无机结合料的掺量(%);

m_w——加水质量(g)。

6 结果整理

- **6.1** 小试件的高度误差范围应为 $-0.1 \sim 0.1 \text{cm}$,中试件的高度误差范围应为 $-0.1 \sim 0.1 \text{cm}$,大试件的高度误差范围应为 $-0.1 \sim 0.2 \text{cm}$ 。
- **6.2** 质量损失:小试件应不超过标准质量 5g,中试件应不超过 25g,大试件应不超过 50g。

7 记录

本试验的记录格式见表 T 0843-1。

表 T 0843-1 稳定材料圆柱形试件成型记录表

工程名称	混合料名称
土质类型	结合料类型及剂量(%)
最佳含水量(%)	最大干密度(g/cm³)
试件压实度(%)	试件标准质量(g)
试验人员	试验日期

编号	直径(mm)				高度(mm)				质量(g)	误差(g)
細ち	1	2	3	平均	1	2	3	平均	灰里(8)	次左(g)
1										
2										
3										
4										
5										
6										

条文说明

实际使用的石灰有两种,一种是用块灰自行消解的消石灰粉(通常过2mm的筛),另一种是袋装生石灰粉。试验时采用的石灰应与施工现场所用石灰相同。在采用生石灰粉时,必须与土拌和后一起进行浸润,而且浸润时间不应少于3h,使生石灰粉能充分消解。否则,试件在养生过程中易由于生石灰粉膨胀而损坏。

400kN 反力架和液压千斤顶适宜用于制备 φ50mm×50mm 的试件,也可用于制备 φ100mm×100mm的试件。用于制备 φ150mm×150mm的试件时,有时压力不够,宜采用 1 000kN 的压力机或反力架和千斤顶。制作试件时,要特别注意两端垫块是否均匀进入。如发现垫块的一侧已进入试模筒内并已与筒顶齐平,而另一侧尚未完全进入筒内,则应解除压力后旋转试模筒,然后再继续加压,直到压柱完全进入试模筒内。加压过程中应注意,否则压力过大易将试模筒压坏(中间鼓出)。

圆柱形试件是无机结合料稳定材料物理力学性能试验的基本形状之一,是强度试验、模量试验的标准试件。圆柱形试件尺寸一般分为三种规格,根据稳定材料粒径的大小而选择,稳定材料混合料的粒径越大,试件尺寸也越大。

为了便于试验操作,圆柱形试件的径高比一般为1:1,这也是目前我国相关试验的标准尺寸规格。 尽管这种规格尺寸的试件在进行顶面压力试验时(如抗压强度试验或抗压回弹模量试验)存在顶面的 应力紊乱现象,有些研究人员认为试验结果失真,但是通过我国"七五"期间相关的研究成果认为,这 种试验结果与工程现场的结果基本吻合,且目前设计规范中的相关参数均采用这种方法测定的试验结果,因此,本规程仍采用这种规格试件作为标准试件。

在科学研究中,根据需要可采用径高比为1:1.5或1:2甚至1:2.5(或1:3)的试件。其成型方法同本规程,但需要注意,随着径高比的增加,不仅单个试件的质量显著增加,而且试件中部的压实、试件成型后的脱模等都将带来较大困难,这将对试验结果的稳定性产生影响。

成型试验根据试件尺寸的大小一般需要2~3d,大致分为三个步骤:成型前一天进行试料准备,包括网料;然后第二天上午可进行压实成型;下午再进行脱模、称量。

试件是按一定标准密度或压实度成型的,因此需要对成型后试件的密度或压实度进行计算评价,以确保试件满足成型要求,即按照试件的实际几何尺寸计算试件的体积,然后根据试件实际质量计算出试件的密度,进而计算出试件压实度。一般要求成型后试件的压实度不超过标准压实度±1%。

在成型过程中,一般情况下会有少量水分挤出,在计算试件干密度时可忽略。如果挤出水过多或 出现试件难以压实成标准尺寸,说明原击实结果有问题,或者成型的配料计算有误,需要认真检查、复 核,找出原因,重新成型。

对于粗粒料稳定材料(特别是水泥稳定类材料),由于细集料较少,在成型过程中,内壁涂机油是必要的。同时为避免表面出现裂纹,应保持试模内壁光洁度,试模口无毛刺、变形,试筒垂度、试模直径公差满足要求。在脱模过程中为了减少对试件的损伤,延长脱模时间是必要的。用水泥稳定有黏结性的材料(如黏性土)时,制件后可以立即脱模;用水泥稳定无黏结性材料时,最好过2~4h 再脱模;对于中、粗粒土的无机结合料稳定材料,也最好过2~6h 脱模。此外,对于所有试件在脱模过程中应做到轻拿轻放,防止脱模搬运过程中对试件的损伤。

T 0844—2009 无机结合料稳定材料试件制作方法(梁式)

适用范围

本方法适用于无机结合料稳定材料的抗弯拉强度、干缩试验、温缩试验、疲劳试验、弯拉模量等试验的梁式试件的成型。

2 仪器设备

2.1 方孔筛:孔径 53mm、37.5mm、31.5mm、26.5mm、4.75mm 和 2.36mm 的筛各 1 个。

2.2 试模: 内壁尺寸 $50 \text{mm} \times 50 \text{mm} \times 200 \text{mm}$ 、 $100 \text{mm} \times 100 \text{mm} \times 400 \text{mm}$ (图 T 0844-1) 或 $150 \text{mm} \times 150 \text{mm} \times 550 \text{mm}$ 。铸铁制成; 内表面磨光, 拆装方便。内部尺寸允许偏差为: 棱边长度不超过 1 mm,直角不超过 0.5° 。模板应有足够的刚度, 在加压振动作用下, 不易变形, 带有与试件面积相同的上、下压块(图 T 0844-2), 厚约 5 cm。

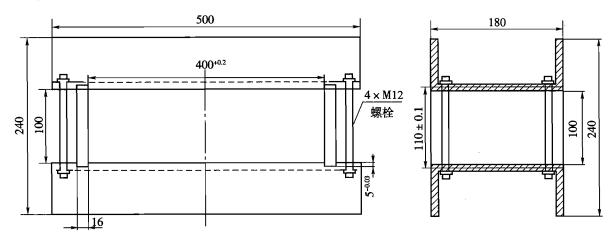


图 T 0844-1 中梁试模的外模尺寸及要求(尺寸单位:mm)

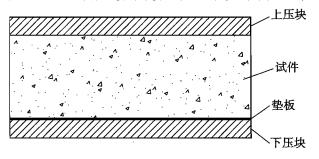


图 T 0844-2 梁式试件成型示意图

- 2.3 压力试验机:可替代千斤顶和反力架,量程不小于2000kN,行程速度可调。
- 2.4 钢板尺:量程应满足测量长度的要求,最小刻度 1mm。
- 2.5 游标卡尺:量程 200mm。
- 2.6 电子天平:量程 15kg,感量 0.1g;量程 4 000g,感量 0.01g。
- 2.7 台秤:量程50kg,感量5g。
- 2.8 垫板:小梁垫板厚度 1mm,中梁垫板厚度 1.5~2mm,大梁垫板厚度 4~5mm。
- 3 试验准备
 - 3.1 根据材料粒径的大小,使用下列尺寸的试模:小梁,50mm×50mm×200mm,适用

于细粒土;中梁, $100mm \times 100mm \times 400mm$,适用于中粒土 $^{\odot}$;大梁, $150mm \times 150mm \times 550mm$,适用于粗粒土。根据需要的压实度水平,按照体积标准,采用静力压实法制备。

注①:由于大梁试件的成型难度较大,在试验室不具备成型条件时,中梁试件的最大公称粒径可放宽到 26.5mm。

- 3.2 将具有代表性的风干试料(必要时,也可以在50℃烘箱内烘干)用木锤捣碎或用木碾碾碎,但应避免破碎粒料的原粒径。按照公称最大粒径的大一级筛将土过筛并进行分类。
- 3.3 在预定做试验的前一天,取有代表性的试料测定其风干含水量。对于细粒土,试样应不少于100g;对于中粒土,试样应不少于1000g;对于粗粒土,试样应不少于2000g。
- 3.4 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
- 3.5 根据击实结果,称取一定质量风干土,其质量随试件大小而变。对于小梁试件,1个试件约需干土900~1100g;对于中梁试件,1个试件约需干土8500~10000g;对于大梁试件,1个试件约需干土26000~28000g。
 - 3.6 将准备好的试料分别装入塑料袋中备用。

4 试验步骤

- **4.1** 调试成型所需要的各种设备,检查是否运行正常;将成型用的模具擦拭干净,并涂抹机油。
- **4.2** 无机结合料稳定细粒土,应制备6个试件;无机结合料稳定中粒土和粗粒土,应分别制备9个和13个试件。
- **4.3** 根据击实结果和无机结合料稳定材料的配合比,计算每份试料的加水量、无机结合料的质量。
- **4.4** 将称好的土放在长方盘(约400mm×600mm×70mm)内。向土中加水拌料、闷料。如为石灰稳定材料、水泥和石灰综合稳定材料、石灰粉煤灰综合稳定材料、水泥粉煤灰综合稳定材料,可将石灰或粉煤灰和土一起拌和,将拌和均匀后的试料放在密闭容器或塑料袋(封口)内浸润备用。

对于细粒土(特别是黏质土),浸润时的含水量应比最佳含水量小3%;对于中粒土和粗粒土可按最佳含水量加水^②;对于水泥稳定类材料,加水量应比最佳含水量小1%~2%。

注②:应加的水量可按式(T0844-1)计算。

$$m_{\rm w} = \left(\frac{m_{\rm n}}{1 + 0.01w_{\rm n}} + \frac{m_{\rm c}}{1 + 0.01w_{\rm c}}\right) \times 0.01w - \frac{m_{\rm n}}{1 + 0.01w_{\rm n}} \times 0.01w_{\rm n} - \frac{m_{\rm c}}{1 + 0.01w_{\rm c}} \times 0.01w_{\rm c}$$
 (T 0844-1)

式中:m_w——混合料中应加的水量(g);

 m_n ——混合料中素土(或集料)的质量(g),其含水量为 w_n (风干含水量)(%);

 m_c ——混合料中水泥或石灰的质量(g),其原始含水量为 w_c (%)(水泥的 w_c 通常很小,也可以忽略不计);

w——要求达到的混合料的含水量(%)。

浸润时间要求: 黏质土 12~24h, 粉质土 6~8h, 砂类土、砂砾土、红土砂砾、级配砂砾等可以缩短到 4h 左右, 含土很少的未筛分碎石、砂砾及砂可以缩短到 2h。浸润时间一般不超过 24h。

- **4.5** 在试件成型前 1h 内,加入预定数量的水泥并拌和均匀。在拌和过程中,应将预留的水(对于细粒土为 3%,对于水泥稳定类为 1%~2%)加入土中,使混合料达到最佳含水量。拌和均匀的加有水泥的混合料应在 1h 内按下述方法制成试件,超过 1h 的混合料应该作废。其他结合料稳定材料,混合料虽不受此限,但也应尽快制成试件。
 - 4.6 采用压力机制备试件。

将试模的下压块放入试模的下部,外露 2 cm 左右,然后将垫板两面刷油后放在下压块的上面^③。当制作小梁时,宜再铺垫与垫板等尺寸的纸。将称量的规定数量 m_2 的稳定材料混合料分 $2 \sim 3$ 次灌入试模中,每次灌入后用夯棒轻轻均匀插实。如制的是小梁试件,则可以将混合料一次倒入试模中。最后将上压块放入试模内,也应使其外露 2 cm 左右(上、下压块露出试模外的部分应该相等)。

注③:为了在梁式试件脱模后能够承托试件的重量,减少试件在搬运过程中的损坏。

- **4.7** 将整个试模(连同上下压块)放到压力机上,加压直到上下压块都压入试模为止。 小梁维持压力 2min,中梁维持压力 5min,大梁维持压力至少 10min。
- **4.8** 解除压力后,取下试模,对于小梁可利用压力机顶推法脱模,对于中梁、大梁宜采用拆卸模具方法脱模。用水泥稳定有黏结性的细粒土时,制件后可以立即脱模;用水泥稳定无黏结性的细粒土时,宜过2~4h 再脱模;对于中、粗粒土的无机结合料稳定材料,宜过2~6h 脱模。
- **4.9** 称试件的质量 m_2 ,小梁精确至 0.01g,中梁精确至 0.1g,大梁精确至 1g。然后用游标卡尺测量试件的断面尺寸以及小梁的长度,精确至 0.1mm。用钢板尺量取中梁、大梁试件的长度,精确至 1mm。检查试件的断面尺寸和质量,不满足成型标准的作为废件。

5 计算

单个试件的标准质量:

$$m_0 = V \times \rho_{\text{max}} \times (1 + w_{\text{opt}}) \times \gamma$$
 (T 0844-2)
--- 90 ---

考虑到试件成型过程中的质量损耗,实际操作过程中每个试件的质量可增加 0~2%,即:

$$m'_0 = m_0 \times (1 + \delta)$$
 (T 0844-3)

每个试件的干料(包括干土和无机结合料)总质量:

$$m_1 = \frac{m'_0}{1 + w_{\text{opt}}} \tag{T 0844-4}$$

每个试件中的无机结合料质量:

外掺法
$$m_2 = m_1 \times \frac{\alpha}{1+\alpha}$$
 (T 0844-5)

内掺法
$$m_2 = m_1 \times \alpha$$
 (T 0844-6)

每个试件中的干土质量:

$$m_3 = m_1 - m_2 \tag{T 0844-7}$$

每个试件的加水量:

$$m_{\rm w} = (m_2 + m_3) \times w_{\rm opt}$$
 (T 0844-8)

验算:

$$m_0' = m_2 + m_3 + m_w$$
 (T 0844-9)

式中: V----试件体积(cm³);

 w_{opt} ——混合料最佳含水量(%);

 ρ_{max} ——混合料最大干密度(g/cm³);

γ---混合料压实度标准(%);

 m_0 、 m'_0 ——混合料质量(g);

 m_1 ——干混合料质量(g);

 m_2 ——无机结合料质量(g);

*m*₃——干土质量(g);

δ——计算混合料质量的冗余量(%);

 α ——无机结合料的掺量(%);

m_w——加水质量(g)。

6 结果整理

- **6.1** 小梁试件的断面尺寸误差范围应为 $-0.1 \sim 0.1$ cm,中梁试件的断面尺寸误差范围应为 $-0.1 \sim 0.1$ cm,大梁试件的断面尺寸误差范围应为 $-0.1 \sim 0.2$ cm。
- **6.2** 质量损失:小梁试件应不超过标准质量 5g,中梁试件应不超过 25g,大梁试件应不超过 50g。

7 记录

本试验的记录格式见表 T 0844-1。

工程名称 混合料名称 土质类型 结合料类型及剂量(%)_____ 最佳含水量(%) 最大干密度(g/cm³) ____ 试件标准质量(g)______ 试件压实度(%) ______ 试验日期 试验人员 断面尺寸(mm) 长度(mm) 质量 误差 编号 左端 左端 右端 右端 平均 平均 (g) (g) 2 3 平均 宽度 高度 宽度 高度 宽度 高度 1 2 3 4 5 6

表 T 0844-1 稳定材料梁式试件成型记录表

条文说明

梁式试件是无机结合料稳定材料物理、力学试验另一种标准试件。根据稳定材料混合料粒径的不同,分别选择小、中、大型试件尺寸规格。由于我国半刚性基层材料的主要级配形式为公称最大粒径为26.5mm的粗粒料,如成型大梁进行试验,目前国内绝大多数试验室不具备相应的成型条件,而且以往我国相应粒径混合料是采用中梁试验,因此本规程中梁试件的公称最大粒径范围可放宽至26.5mm。

梁式试件成型步骤与圆柱形试件类似,大致分为3步:成型前一天备料、闷料;然后第二天上午可压实成型;下午或第三天(中梁、大梁)再进行脱模。由于梁式试件的体积比较大(1个中梁试件一般相当于大型圆柱形试件质量的1.5倍), 脱模操作比较烦琐, 所以操作人员一般为3~4人。

同圆柱形试件一样,梁式试件成型后需要检测试件的密度或压实度,以保证试件的质量。

T 0845—2009 无机结合料稳定材料养生试验方法

1 适用范围

- 1.1 本方法适用水泥稳定材料类和石灰、二灰稳定材料类的养生。
- **1.2** 标准养生方法是指无机结合料稳定类材料在规定的标准温度和湿度环境下强度增长的过程。快速养生是为了提高试验效率,采用提高养生温度缩短养生时间的养生

方法。

1.3 本方法规定了无机结合料稳定材料的标准养生和快速养生的试验方法和步骤。 在采用快速养生时,应建立快速养生条件下与标准养生条件下,混合料的强度发展的关系 曲线,并确定标准养生的长龄期强度对应的快速养生短龄期。

2 仪器设备

- **2.1** 标准养护室:标准养护室温度 $20\% \pm 2\%$,相对湿度在 95% 以上。
- **2.2** 高温养护室:能保持试件养生温度 60° ± 1° ,相对湿度 95% 以上。容积能满足试验要求。

3 试验步骤

- 3.1 标准养生方法
- **3.1.1** 试件从试模内脱出并量高称质量后,中试件和大试件应装入塑料袋内。试件装入塑料袋后,将袋内的空气排除干净,扎紧袋口,将包好的试件放入养护室。
- **3.1.2** 标准养生的温度为 $20\% \pm 2\%$, 标准养生的湿度为 ≥ 95%。试件宜放在铁架或木架上,间距至少 $10 \sim 20$ mm。试件表面应保持一层水膜,并避免用水直接冲淋。
- 3.1.3 对无侧限抗压强度试验,标准养生龄期是7d,最后一天浸水。对弯拉强度、间接抗拉强度,水泥稳定材料类的标准养生龄期是90d,石灰稳定材料类的标准养生龄期是180d。
- **3.1.4** 在养生期的最后一天,将试件取出,观察试件的边角有无磨损和缺块,并量高称质量,然后将试件浸泡于 20℃ ± 2 ℃水中,应使水面在试件顶上约 2.5 cm。

3.2 快速养生方法

3.2.1 快速养牛龄期的确定

- (1)将一组无机结合料稳定材料,在标准养生条件下(20℃ ±2℃,湿度≥95%)养生 180d(石灰稳定类材料养生 180d,水泥稳定类材料养生 90d)测试抗压强度值。
- (2)将同样的一组无机结合料稳定材料,在高温养生条件下(60℃ ± 1℃,湿度 > 95%)下养生 7d、14d、21d、28d 等,进行不同龄期的抗压强度试验,建立高温养生条件下强度—龄期的相关关系。
 - (3)在强度一龄期关系曲线上,找出标准养生长龄期强度对应的高温养生的短龄期。

并以此作为快速养生的龄期。

3.2.2 快速养生试验步骤

- (1)将高温养护室的温度调至规定的温度 $60\% \pm 1\%$,湿度也保持在 95% 以上,并能自动控温控湿。
- (2)将制备的试件量高称质量后,小心装入塑料袋内。试件装入塑料袋后,将袋内的空气排除干净,并将袋口扎紧,将包好的试件放入养护箱中。
- (3)养生期的最后一天,将试件从高温养护室内取出,晾至室温(约 2h),再打开塑料袋取出试件,观察试件有无缺损,量高称质量后,浸入 20℃ ±2℃恒温水槽中,水面高出试件顶 2.5cm。浸水 24h 后,取出试件,用软布擦去可见自由水,称质量、量高后,立即进行相关的试验。

4 结果整理

- 4.1 如养生期间有明显的边角缺损,试件应该作废。
- **4.2** 对养生 7d 的试件,在养生期间,试件质量损失应符合下列规定:小试件不超过 1g;中试件不超过 4g;大试件不超过 10g。质量损失超过此规定的试件,应予作废。
- **4.3** 对养生 90d 和 180d 的试件,在养生期间,试件质量的损失应符合下列规定:小试件不超过 1g;中试件不超过 10g;大试件不超过 20g。质量损失超过此规定的试件,应予作废。

5 报告

试验报告应包括以下内容:

- (1)材料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的等级;
- (3) 重型击实的最佳含水量(%) 和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度(保留小数点后3位,g/cm³)或压实度;
- (6)该材料在高温下龄期与强度的对应关系;
- (7)与标准长龄期强度所对应的快速养生的龄期。

6 记录

本试验的记录格式根据所养生的试件类型,采取相应的梁式试件和圆柱形试件的记录表格。圆柱形试件养生记录见表 T 0845-1。在记录内容里增加养生的起始日前和终止日期,养生的温度、湿度和养生结束后的试验内容。

		;	表 T 0845	-1 稳定	材料圆柱	E形试件貌	\$生记录	長		
工程4	宫称				混合	}料名称_				
土质					结合	計 类型	及剂量(%	,)		
									续	上表
最佳行	含水量(%	ő)			最っ	七干密度((g/cm ³)_			
试件	玉实度(%	6)			试化	牛标准质量	量(g)			
					试验	金目的		•		
						高度	(mm)			
编号	1	表 T 0845-1 稳定材料圆柱形试件养生记录表 混合料名称	质量(g)	误差(%)						
1										
2										
3										
4										
				饱力	く前质量和	尺寸				
1										
2										
3										
4	<u> </u>		<u> </u>							
				饱力	K 后质量和	尺寸				
1										
2										
3										
4										

条文说明

试件的质量损失指含水量的减少,不包括由于各种不同原因从试件上掉下的混合料。

关于无机结合料稳定材料的养生温度,原规程中规定的是北方地区 $20\% \pm 2\%$,南方地区为 $25\% \pm 2\%$ 。这是为了方便南北方地区的室内养生条件的需要而制定的。目前,各试验室都应具备自动控温、控湿的条件。为了使南北方的室内试验结果具有可比性,同时也为了与水泥混凝土的养生方法一致,方便各试验室操作,本次修订将无机结合料稳定材料的养生温度统一为 $20\% \pm 2\%$ 。

由于此次标准养生温度的改变将影响到无机结合料稳定材料的设计强度的确定,编写组进行了相同无机结合料分别在 $20\% \pm 2\%$ 、 $25\% \pm 2\%$ 情况下养生试验,测试其抗压强度。试验结果为,同一组混合料在 $25\% \pm 2\%$ 、95% 湿度下养生 7d 的抗压强度为 6.4 MPa,在 $20\% \pm 2\%$ 、95% 湿度下养生 7d 的抗压强度为 5.4 MPa。也就是说, $25\% \pm 2\%$ 下养生的强度是 $20\% \pm 2\%$ 下养生强度的 1.18 倍。

在快速养生过程中,确定标准养生的长龄期对应的快速养生的短龄期时,也可以采用测试抗压回弹模量和劈裂强度值来建立两者的关系。在实际试验中,根据具体试验目的选用。

5 无机结合料稳定材料的物理、力学试验

T 0805—1994 无机结合料稳定材料无侧限抗压强度试验方法

1 适用范围

本方法适用于测定无机结合料稳定材料(包括稳定细粒土、中粒土和粗粒土)试件的 无侧限抗压强度。

- 2 仪器设备
 - 2.1 标准养护室。
 - 2.2 水槽:深度应大于试件高度 50mm。
- 2.3 压力机或万能试验机(也可用路面强度试验仪和测力计):压力机应符合现行《液压式压力试验机》(GB/T 3722)及《试验机通用技术要求》(GB/T 2611)中的要求,其测量精度为±1%,同时应具有加载速率指示装置或加载速率控制装置。上下压板平整并有足够刚度,可以均匀地连续加载卸载,可以保持固定荷载。开机停机均灵活自如,能够满足试件吨位要求,且压力机加载速率可以有效控制在1mm/min。
 - 2.4 电子天平:量程 15kg,感量 0.1g;量程 4 000g,感量 0.01g。
 - 2.5 量筒、拌和工具、大小铝盒、烘箱等。
 - 2.6 球形支座。
 - 2.7 机油:若干。
- 3 试件制备和养护
- 3.1 细粒土,试模的直径×高 = ϕ 50mm×50mm;中粒土,试模的直径×高 = ϕ 100mm×100mm;粗粒土,试模的直径×高 = ϕ 150mm×150mm。

- 3.2 按照本规程 T 0843—2009 方法成型径高比为 1:1的圆柱形试件。
- 3.3 按照本规程 T 0845—2009 的标准养生方法进行 7d 的标准养生。
- 3.4 将试件两顶面用刮刀刮平,必要时可用快凝水泥砂浆抹平试件顶面。
- **3.5** 为保证试验结果的可靠性和准确性,每组试件的数目要求为:小试件不少于6个;中试件不少于9个;大试件不少于13个。

4 试验步骤

- **4.1** 根据试验材料的类型和一般的工程经验,选择合适量程的测力计和压力机,试件破坏荷载应大于测力量程的 20%且小于测力量程的 80%。球形支座和上下顶板涂上机油,使球形支座能够灵活转动。
- **4.2** 将已浸水一昼夜的试件从水中取出,用软布吸去试件表面的水分,并称试件的质量 m_4 。
 - **4.3** 用游标卡尺测量试件的高度 h,精确至 0.1mm。
- **4.4** 将试件放在路面材料强度试验仪或压力机上,并在升降台上先放一扁球座,进行抗压试验。试验过程中,应保持加载速率为1 mm/min。记录试件破坏时的最大压力P(N)。
- **4.5** 从试件内部取有代表性的样品(经过打破),按照本规程 T 0801-2009 方法,测定 其含水量 w。

5 计算

试件的无侧限抗压强度按式(T0805-1)计算。

$$R_{\rm c} = \frac{P}{A}$$
 (T 0805-1)

式中: $R_{\rm e}$ ——试件的无侧限抗压强度(MPa);

P——试件破坏时的最大压力(N);

A——试件的截面积(mm²);

$$A = \frac{1}{4} \pi D^2$$

D——试件的直径(mm)。

6 结果整理

6.1 抗压强度保留 1 位小数。

- **6.2** 同一组试件试验中,采用 3 倍均方差方法剔除异常值,小试件可以允许有 1 个异常值,中试件 1~2 个异常值,大试件 2~3 个异常值。异常值数量超过上述规定的试验重做。
- **6.3** 同一组试验的变异系数 $C_v(\%)$ 符合下列规定,方为有效试验:小试件 $C_v \le 6\%$;中试件 $C_v \le 10\%$;大试件 $C_v \le 15\%$ 。如不能保证试验结果的变异系数小于规定的值,则应按允许误差 10% 和 90% 概率重新计算所需的试件数量,增加试件数量并另做新试验。新试验结果与老试验结果一并重新进行统计评定,直到变异系数满足上述规定。

7 报告

试验报告应包括以下内容:

- (1)材料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的等级;
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度(保留3位小数,g/cm³)或压实度;
- (6) 吸水量以及测抗压强度时的含水量(%);
- (7) 抗压强度,保留1位小数;
- (8) 若干个试验结果的最小值和最大值、平均值 R_c 、标准差S、变异系数 C_v 和 95%保证率的值 $R_{c0.95}(R_{c0.95}=\bar{R}_c-1.645S)$ 。

表 T 0805-1 无侧限抗压强度试验记录表

8 记录

本试验的记录格式见表 T 0805-1。

试件制备方法			
制件日期			
养生前试件质量 $m_2(g)$			
浸水前试件质量 $m_3(g)$			
浸水后试件质量 m4(g)			
养生期间的质量损失 * m ₂ - m ₃ (g)			
吸水量 m ₄ - m ₃ (g)			

						续上表
	试件号					
养生的	ń试件的高度 h(cm)					
浸水品	后试件的高度 h(cm)					
试验	的最大压力 P(N)					
无侧阵	見抗压强度 R _c (MPa)					
平均值(MPa)		变异系数(%)		代表值(MPa)	

注:*指水分损失。如养生后试件掉粒或掉块,不作为水分损失。

条文说明

在进行强度试验时,试件需放置在竖向荷载的中心位置,如采用测力计,测力计中心、球形支座、上压板、试件及下压板(或半球形支座)应处在同一条直线上,避免偏载对试验结果的影响。

试验前,试件表面应用刮刀刮平,避免试件表面不均匀的突起物在试验过程中造成应力集中,导致试验数据失真。必要时,可用快凝的水泥砂浆抹面处理。如需要抹面,应在试件饱水前完成,然后进行饱水。

目前抗压强度标准试件规格的径高比为1:1。有研究表明,此规格试件容易产生顶端应力紊乱现象, 因此有些科研单位采用径高比为1:1.5或1:2的试件。表T0805-2为不同径高比试件无侧限抗压强度试验结果。由此看出,对于相同材料,试件径高比不同,其强度相差比较明显,这是值得注意的问题。

强度代表值	强度 (MPa)	变异系数 (%)	强度 (MPa)	变异系数 (%)	强度 (MPa)	变异系数 (%)	强度 (MPa)	变异系数 (%)	
完整试件	φ10cm	×10cm	ф10ст	×15cm	ф10ст	φ10cm × 20cm		φ10cm ×30cm	
正常界面	4.35	13.07	3.55	7.57	3.08	8.05	2. 55	18.93	
10×30 切割	φ10cm	×10cm	ф10ст	×15cm	φ10cm	×20cm			
正常界面	3.98	10.69	2.73	6.80	2.94	11.56			

表 T 0805-2 不同方法得到试件强度比较

同时,进行强度试验时,尽管试件表面进行了处理等,但由于试件与上、下压块之间,在荷载施加过程中仍会产生较大的摩擦力,对试验结果仍会产生比较显著的影响。为此,应采用必要措施消除这种影响,即首先将甘油与滑石粉的混合物(质量比2:1)涂在试件的上、下顶面上,再用60℃左右的熔蜡将两端封闭,可封闭两次,蜡膜厚度1~2mm,然后进行强度测试。表 T 0805-3 为有关的试验结果。由表 T 0805-3可以看出,两端进行处理后,基本消除了界面摩擦力,试件强度大幅度降低,尽管仍为1:1试件,但其强度水平基本上与1:2试件相当。

表 T 0805-3 试件端部状况对于强度的影响

级配	端部状况	平均值(MPa)	C _v (%)	代表值(MPa)
	饱水后端部涂甘油	4.12	10.16	3.43
u –	饱水后两端蜡封	2. 21	7.16	1.95
0	饱水后单面蜡封	2.57	9.39	2.17
	饱水后正常界面	4. 19	9.00	3.57

		1.
45	L	Æ
2:IL		70

级配	端部状况	平均值(MPa)	C _v (%)	代表值(MPa)
	饱水后端部涂甘油	5.35	1.63	5.20
饱水后两端蜡封		2.59	6.67	2.31
W	饱水后单面蜡封	2.75	6.46	2.46
	饱水后正常界面	5.79	5.89	5.22
	饱水后端部涂甘油	4.46	9.09	3.79
37	饱水后两端蜡封	2.18	7.34	1.92
Y	饱水后单面蜡封	2. 26	7.97	1.96
	饱水后正常界面	5. 28	9.72	4.44

由于目前设计指标是采用以往的试验方法测试得的,如采用顶面处理方法测定强度,其强度标准将会大幅降低,工程技术人员还难以接受,工程操作存在一定困难。为此,本规程仍采用以往试验方法,但顶面处理方法暴露出的问题值得引起重视。

除特殊目的外,试件的干密度应与规定的施工过程中必须达到的干密度(压实度×最大干密度)相一致。

根据《公路路面基层施工技术规范》(JTJ 034—2000),在施工前和施工过程中对稳定材料混合料进行材料组成设计,只用7d龄期的抗压强度。如需要不同龄期混合料的强度,则按要求延长养生期。

允许的变异系数按式(T0805-2)计算。

$$C_{v} = \frac{S}{\overline{x}} \tag{T 0805-2}$$

式中: C_v ——允许的变异系数;

x----算术平均值;

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

S---标准差。

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

允许的变异系数 C_v 是与规定的试验数量 n 相对应的。 n 用式(T 0805-3) 求得。

$$n = [t_{1-a/2}C_v | e |]^2$$
 (T 0805-3)

式中:n---试验数量;

 $t_{1-a/2}$ ——t 分布表中的分位值;

|e|---允许误差,在此取10%。

正态分布表中相同概率(或 a)的 Z_{1-u^2} 的值,代入式中计算得 n 后,再加 2 或 3 即为所要的试验数量。在此用 90% 概率(即 a=0.10), $Z_{1-u^2}=1.645$ 。

如果试验结果的 C_v 超过本条的规定,则应按实际的 C_v 值用上式重新计算应做的试验数量,以保证试验结果的精度,并增补所缺的试件数。

T 0806—1994 无机结合料稳定材料间接抗拉强度试验方法(劈裂试验)

1 适用范围

本方法适用于测定无机结合料稳定材料(包括稳定细粒土、中粒土和粗粒土)试件的间接抗拉强度。

2 仪器设备

- 2.1 压力机或万能试验机(也可用路面强度试验仪和测力计):压力机应符合现行《液压式压力试验机》(GB/T 3722)及《试验机通用技术要求》(GB/T 2611)中的要求,其测量精度为±1%,同时应具有加载速率指示装置或加载速率控制装置。上下压板平整并有足够刚度,可以均匀地连续加载卸载,可以保持固定荷载。开机停机均灵活自如,能够满足试件吨位要求,且压力机加载速率可以有效控制在1mm/min。
 - 2.2 劈裂夹具:同T0852—2009。
- **2.3** 压条:采用半径与试件半径相同的弧面压条,其长度应大于试件的高度。不同尺寸试件采用的压条宽度和弧面半径见表 T 0806-1。

 試件尺寸(mm)
 压条宽度(mm)
 弧面半径(mm)

 φ50 × 50
 6.35
 25

 φ100 × 100
 12.70
 50

 φ150 × 150
 18.75
 75

表 T 0806-1 不同试件对应的压条尺寸

- 2.4 标准养护室。
- 2.5 水槽:深度应大于试件高度 50mm。
- 2.6 电子天平: 量程 15kg, 感量 0.1g; 量程 4 000g, 感量 0.01g。
- 2.7 量筒、拌和工具、大小铝盒、烘箱等。
- 2.8 球形支座。
- 2.9 机油:若干。

3 试件的制备和养护

- **3.1** 试件采用高径比为 1:1的圆柱体。细粒土试模的直径 × 高 = ϕ 50mm × 50mm; 中粒土试模的直径 × 高 = ϕ 100mm × 100mm; 粗粒土试模的直径 × 高 = ϕ 150mm × 150mm。本试验应采用静力压实法制备等干密度的试件。
 - **3.2** 按照本规程 T 0843—2009 方法成型径高比为 1:1的圆柱形试件。
 - 3.3 按照本规程 T 0845—2009 方法进行设计龄期的标准养生。
- **3.4** 为保证试验结果的可靠性和准确性,每组试件的数目要求为:小试件不少于6个;中试件不少于9个;大试件不少于13个。

4 试验步骤

- **4.1** 根据试验材料的类型和一般的工程经验,选择合适量程的测力计和试验机,试件破坏荷载应大于测力量程的 20%且小于测力量程的 80%。球形支座和上下压条涂上机油,使球形支座能够灵活转动。
- **4.2** 将已浸水一昼夜的试件从水中取出,用软布吸去试件表面的可见自由水,并称试件的质量。
 - **4.3** 用游标卡尺测量试件的高度 h ,精确至 0.1 mm。
- **4.4** 在压力机的升降台上置一压条,将试件横置在压条上,在试件的顶面也放一压条(上下压条与试件的接触线必须位于试件直径的两端,并与升降台垂直。)
 - 4.5 在上压条上面放置球形支座,球形支座应位于试件的中部。
- **4.6** 试验过程中应使试验的形变等速增加,保持加载速率为 1 mm/min。记录试件破坏时的最大压力 P(N)。
- **4.7** 从试件内部取有代表性的样品(经过打碎),按照本规程 T 0801—2008 方法,测定 其含水量 w。

5 计算

试件的间接抗拉强度按式(T0806-1)计算。

$$R_{i} = \frac{2P}{\pi dh} \left(\sin 2\alpha - \frac{a}{d} \right)$$

$$-102 -$$
(T 0806-1)

式中: R_i ——试件的间接抗拉强度(MPa);

d——试件的直径(mm);

a——压条的宽度(mm);

 α ——半压条宽对应的圆心角(°);

P——试件破坏时的最大压力(N);

h——浸水后试件的高度(mm)。

对于小试件:

$$R_{\rm i} = 0.012526 \frac{P}{h} (\text{MPa})$$
 (T 0806-2)

对于中试件:

$$R_{\rm i} = 0.006 \ 263 \ \frac{P}{h} (\text{MPa})$$
 (T 0806-3)

对于大试件:

$$R_{\rm i} = 0.004 \ 178 \ \frac{P}{h} (\text{MPa})$$
 (T 0806-4)

6 结果整理

- 6.1 间接抗拉强度保留两位小数。
- **6.2** 同一组试件试验中,采用 3 倍均方差方法剔除异常值,小试件可以有 1 个异常值,中试件 1~2 个异常值,大试件 2~3 个异常值。异常值数量超过上述规定的试验重做。
- **6.3** 同一组试验的变异系数 $C_v(\%)$ 符合下列规定,方为有效试验:小试件 $C_v \le 6\%$; 中试件 $C_v \le 10\%$; 大试件 $C_v \le 15\%$ 。如不能保证试验结果的变异系数小于规定的值,则应按允许误差 10% 和 90% 概率重新计算所需的试件数量,增加试件数量并另做新试验。新试验结果与老试验结果一并重新进行统计评定,直到变异系数满足上述规定。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4)无机结合料类型及剂量;
- (5)试件干密度(保留3位小数,g/cm³)或压实度;
- (6) 吸水量以及测间接抗拉强度时的含水量(%);
- (7)间接抗拉强度(MPa),用两位小数表示;
- (8)若干个试验结果的最小值和最大值、平均值 R_i 、标准差 S、变异系数 C_i 和 95% 保

证率的值 $R_{i0.95}(R_{i0.95} = \overline{R}_i - 1.645S)$ 。

8 记录

本试验的记录格式见表 T 0806-1。

表 T 0806-1 间接抗拉强度试验记录表

工程名称	试件尺寸(cm)							
路段范围	养生龄期(d)							
混合料名称					min)			
结合料剂量(%)			试 验	者				_
最大干密度(g/cm³)			校 核	者				_
试件压实度(%)		_	试验日	期				_
制件日期								
养生前试件质量 m ₂ (g)								
浸水前试件质量 m ₃ (g)								
浸水后试件质量 m4(g)								
养生期间的质量损失 * m ₂ - m ₃ (g	g)							
吸水量 m ₄ - m ₃ (g)								
养生前试件的高度 h ₀ (cm)								
浸水后试件的高度 h(cm)								
破坏载荷 P(N)								
间接抗拉强度 R _i (MPa)								
平均值(MPa)	变异系	(%)			代表值の	(MPa)		

注:*指水分损失。如养生后试件掉粒或掉块,不作为水分损失。

条文说明

安置试件时,应选择平顺的侧面放在压条上,尽可能保证试件与压条完全接触,无漏空处。为了提高试验的准确性,本规程建议采用加压条进行试验。在无压条时,试件的间接抗拉强度按式(T0806-5)计算。

$$R_{\rm i} = \frac{2P}{\pi dh} \tag{T 0806-5}$$

式中:P---试件破坏时的最大压力(N);

d——试件的直径(mm);

h——浸水后试件的高度(mm)。

T 0851—2009 无机结合料稳定材料弯拉强度试验方法

1 适用范围

本方法适用于测定无机结合料稳定材料的弯拉强度,并为无机结合料稳定材料的弯拉疲劳试验、弯拉模量试验确定加荷标准提供基础参数。试验采用三分点加压的方法进行。

2 仪器设备

- 2.1 压力机或万能试验机(也可用路面强度试验仪和测力计):压力机应符合现行《液压式压力试验机》(GB/T 3722)及《试验机通用技术要求》(GB/T 2611)中的要求,其测量精度为±1%,同时应具有加载速率指示装置或加载速率控制装置。上下压板平整并有足够刚度,可以均匀地连续加载卸载,可以保持固定荷载。开机停机均灵活自如,能够满足试件吨位要求,且压力机加载速率可以有效控制在50mm/min。
 - 2.2 加载模具:如图 T 0851-1 所示。
 - 2.3 标准养护室。
 - 2.4 球形支座。
- 2.5 电子天平: 量程 15kg, 感量 0.1g; 量程 4 000g, 感量 0.01g。
 - 2.6 台秤:量程50kg,感量5g。

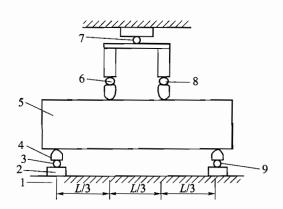


图 T 0851-1 弯拉强度试验装置图(尺寸单位:mm) 1-机台;2-活动支座;3、8-两个钢球;4-活动船形垫块;5-试件;6、7、9-一个钢球

3 试件制备和养护

3.1 根据混合料粒径的大小,选择不同尺寸的试件尺寸:小梁,50mm×50mm×200mm,适用于细粒土;中梁,100mm×100mm×400mm,适用于中粒土^①,大梁,150mm×150mm×550mm,适用于粗粒土。

注①:由于大梁试件的成型难度较大,在试验室不具备成型条件时,中梁试件的最大公称粒径可放宽到 26.5mm。

- 3.2 按照本规程 T 0844—2009 方法成型梁式试件。
- 3.3 养生时间视需要而定,水泥稳定材料、水泥粉煤灰稳定材料的养生龄期应是90d, 石灰稳定材料和石灰粉煤灰稳定材料的养生龄期应是180d。按照本规程T0845—2009 标准养生方法进行养生。
- **3.4** 为保证试验结果的可靠性和准确性,每组试件的试验数目要求为:小梁试件不少于 6 根;中梁不少于 12 根;大梁不少于 15 根。

4 试验步骤

4.1 根据试验材料的类型和一般的工程经验,选择合适量程的测力计和试验机,对被测试件施加的压力应在量程的 20% ~80% 范围内。如采用压力机系统,需调试设备,设

定好加载速率。

- **4.2** 球形支座涂上机油,使球形支座能够灵活转动,并安放在上压块上。在上下压块的左右两个半圆形压头上涂上机油。
 - 4.3 试件取出后,用湿毛巾覆盖并及时进行试验,保持试件干湿状态不变。
 - 4.4 在试件中部量出其宽度和高度,精确至1mm。
 - 4.5 在试件侧面(平行于试件成型时的压力方向)标出三分点位置。
- **4.6** 将试件安放在试架上,荷载方向与试件成型时的压力方向一致,上下压块应位于试件三分点位置。
 - 4.7 安放球形支座。
 - 4.8 根据试验要求,在梁跨中安放位移传感器,测量破坏极限荷载时的跨中位移。
 - 4.9 加载时,应保持均匀、连续,加载速率为50mm/min,直至试件破坏。
 - **4.10** 记录破坏极限荷载 P(N) 或测力计读数。

5 计算

按式(T0851-1)计算弯拉强度。

$$R_{\rm s} = \frac{PL}{b^2 h}$$
 (T 0851-1)

式中: R_s —— 弯拉强度(MPa);

P ----破坏极限荷载(N);

L ——跨距, 也就是两支点间的距离(mm);

b ——试件宽度(mm);

h ——试件高度(mm)。

6 结果整理

- 6.1 弯拉强度保留两位小数。
- **6.2** 同一组试件试验中,采用 3 倍均方差方法剔除异常值,小梁可以有 1 个异常值,中梁 1~2 个异常值,大梁 2~3 个异常值。异常值数量超过上述规定的试验重做。

6.3 同一组试验的变异系数 C_v (%)符合下列规定,方为有效试验:小梁 $C_v \le 6\%$;中梁 $C_v \le 10\%$;大梁 $C_v \le 15\%$ 。如不能保证试验结果的变异系数小于上述规定,则应按允许误差 10% 和 90% 概率重新计算所需的试件数量,增加试件数量并另做新试验。新试验结果与老试验结果一并重新进行统计评定,直到变异系数满足上述规定。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度(保留3位小数,g/cm3)或压实度;
- (6)吸水量以及测间接抗拉强度时的含水量(%);
- (7)弯拉强度(MPa),用两位小数表示;
- (8) 若干个试验结果的最小值和最大值、平均值 \overline{R}_s 、标准差 S、变异系数 C_v 和 95% 保证率的值 $R_{s0.95}(R_{s0.95}=\overline{R}_s-1.645S)$ 。

8 记录

本试验的记录格式见表 T 0851-1。

表 T 0851-1 弯拉强度试验记录表

<u> </u>		试件尺寸(cm)								
路段范围		养生龄期(d)								
混合料名称			加载速率(
结合料剂量(%)			、试 验 者_							
最大干密度(g/cm³)			校核者_							
试件压实度(%)			试验日期_							
—————————————————————————————————————										
	<u> </u>	_								
—————————————————————————————————————	_									
养生前试件质量 7	n ₂ (g)									
浸水前试件质量,	n ₃ (g)									
浸水后试件质量 7	n ₄ (g)									
养生期间的质量损失*;	$m_2 - m_3(g)$									
吸水量 m ₄ - m ₃	(g)									
养生前试件的高度	h ₀ (mm)									
破坏载荷 P(N										
弯拉强度 R _s (M	Pa)									
平均值(MPa)		变	异系数(%)			代表值	(MPa)			

注:*指水分损失。如养生后试件掉粒或掉块,不作为水分损失。

条文说明

关于加载速率,《公路柔性路面设计规范》(1986年)曾规定弯拉强度的测定方法采用三分点加载,加载速率为1mm/min。研究表明:由于疲劳试验频率较高,这种方法测定的弯拉强度并不适应用于疲劳试验的要求。编写组按上述1mm/min的方法测定的某种水泥碎石的弯拉强度为1.13MPa,变异系数为13.3%,但在实际的疲劳试验过程中,当荷载达到1.13MPa后,作用几百万次仍不破坏。采用10Hz的加载频率和1mm/min的加载速率两种方法对水泥砂小梁进行平行试验发现:前者的平均弯拉强度比后者高出1.44倍,均方差为0.23。若用1.44乘上1.13就可近似得出水泥碎石中梁在10Hz动荷载下的平均弯拉强度1.63MPa,这说明快速加载的试验方法测得的弯拉强度大于慢速加载时测得的疲劳强度,也说明快速加载测得的弯拉强度更适合用于疲劳试验。《公路沥青路面设计规范》(JTG D50—2006)中规定沥青材料的弯拉强度按照《公路工程沥青及沥青混合料试验规程》(JTJ 052—2000)规定的加载速率50mm/min进行试验。

弯拉强度试验有三分点加载和中心点加载两种加载模式。鉴于目前梁式试件的疲劳试验基本采用三分点加载模式,为了使弯拉强度试验结果可用于疲劳试验,本规程采用三分点加载模式。同时,由于路面材料存在较明显的非线性,加载速率对强度试验结果影响较大,为了用于疲劳试验,弯拉强度试验的加载速率与抗压强度和劈裂强度试验的加载速率有明显差别,宜采用快速加载模式,加载速率为50mm/min,使其尽量与疲劳试验时动态荷载的加载速率相一致。

T 0808—1994 无机结合料稳定材料室内抗压回弹模量试验方法(顶面法)

1 适用范围

本方法适用于在室内对无机结合料稳定材料试件进行抗压回弹模量试验。

2 仪器设备

- 2.1 压力机或万能试验机(也可用路面强度试验仪和测力计):压力机应符合现行《液压式压力试验机》(GB/T 3722)及《试验机通用技术要求》(GB/T 2611)中的要求,其测量精度为±1%,同时应具有加载速率指示装置或加载速率控制装置。上下压板平整并有足够刚度,可以均匀地连续加载卸载,可以保持固定荷载。开机停机均灵活自如,能够满足试件吨位要求,且压力机加载速率可以有效控制在1mm/min。
- 2.2 测形变装置:圆形金属平面加载顶板和圆形金属平面加载底板,板的直径应大于 试件的直径,底板直径线两侧有立柱,立柱上装有千分表夹,也可以直接利用直径 152mm 击实筒的底座。
- **2.3** 千分表(1/1 000mm):2只(或相同精度的位移传感器,2个),也可采用数据采集系统,包括荷载传感器(1个)、位移传感器(2个)、荷载计数器以及数据采集仪。

- 2.4 标准养护室。
- 2.5 水槽:深度应大于试件高度 50mm。
- 2.6 天平:量程4000g,感量0.01g;量程15kg,感量0.1g。
- 2.7 机油:若干。
- 2.8 球形支座。
- 2.9 适合测试范围的测力计。
- 2.10 圆形钢板。
- 3 试件制备和养护
- **3.1** 细粒式和中粒式混合料成型 ϕ 100mm ×100mm 试件,粗粒式混合料成型 ϕ 150mm × 150mm 试件。
- 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
- 3.3 试件数量:对于无机结合料稳定细粒土,应制备不少于6个试件,并要求模量试验结果的变异系数不超过10%;对于无机结合料稳定中粒土,应制备不少于9个试件,并要求模量试验结果的变异系数不超过10%;对于无机结合料稳定粗粒土,应制备不少于15个试件,并要求模量试验结果的变异系数不超过15%。
 - 3.4 按照本规程 T 0843-2009 方法制备试件。
- 3.5 按照本规程 T 0845—2009 标准养生方法进行养生,水泥稳定类土养生龄期为90d,石灰或粉煤灰稳定类土养生龄期180d。
- 3.6 圆柱形试件的两个端面应用水泥净浆彻底抹平。将试件直立桌上,在上端面用早强高强水泥净浆薄涂一层后,在表面撒少量 0.25~0.5mm 的细砂,用直径大于试件的平面圆形钢板放在顶面,加压旋转圆钢板,使顶面齐平。边旋转边平移并迅速取下钢板。如有净浆被钢板粘去,则重新用净浆抹平,并重复上述步骤。一个端面整平后,放置 4h 以上,然后将另一端面同样整平。整平应该达到:加载板放在试件顶面后,在任一方向都不会翘动。试件整平后放置 8h 以上。

3.7 将端面已经处理平整的试件饱水 24h,水面高于试件顶面约 2.5cm。

4 试验步骤

- **4.1** 根据试验材料的类型和一般的工程经验,选择合适量程的测力计和试验机,对被测试件施加的压力应在量程的 20% ~80% 范围内。如采用压力机系统,需调试设备,设定好加载速率。
- **4.2** 加载板上的计算单位压力的选定值:对于无机结合料稳定基层材料,用 0.5 ~ 0.7MPa;对于无机结合料稳定底基层材料,用 0.2 ~ 0.4MPa。实际加载的最大单位压力应略大于选定值。
- **4.3** 将试件浸水 24h 后从水中取出,并用布擦干后放在加载底板上,在试件顶面撒少量 0.25~0.5mm 的细砂,并手压加载板在试件顶面边加压边旋转,使细砂填补表面微观的不平整处,并使多余的砂流出,以增加顶板与试件的接触面积。
- **4.4** 安置千分表,使千分表的脚支在加载顶板直径线的两侧并离试件中心距离大致相等。
- **4.5** 将带有试件的测变形装置放到路面材料强度试验仪的升降台上(也可以先将测变形装置放在升降台上再安置试件和千分表),调整升降台的高度,使测力环下端的压头中心与加载板的中心接触。
- **4.6** 预压: 先用拟施加的最大载荷的一半进行两次加载卸载预压试验, 使加载顶板与试件表面紧密接触。每两次卸载后等待 1 min, 然后将千分表的短指针调到中间位置, 并将长指针调到 0, 记录千分表的原始读数。
- 4.7 回弹变形测量:将预定的单位压力分成 5~6等份,作为每次施加的压力值。实际施加的荷载应较预定级数增加 1 级。施加第 1 级荷载(如为预定最大荷载的 1/5),待荷载作用达 1 min 时,记录千分表的读数,同时卸去荷载,让试件的弹性变形恢复。到0.5 min 时记录千分表的读数,施加第 2 级荷载(为预定最大荷载的 2/5),同前,待荷载作用 1 min,记录千分表的读数,卸去荷载。卸载后达 0.5 min 时,再记录千分表的读数,并施加第 3 级荷载。如此逐级进行,直至记录下最后一级荷载下的回弹变形。

5 计算

5.1 按式(T0808-1)计算每级荷载下的回弹变形 l。

l = 加载时读数 - 卸载时读数 (T 0808-1)

5.2 以单位压力p为横坐标(向右)、回弹变形l为纵坐标(向下),绘制p与l的关系曲线,修正曲线开始段的虚假变形。修正时,一般情况下将第1个和第2个试验点取成直线,并延长此直线与纵坐标轴相交,此交点即为新原点,如图 T 0808-1 所示。

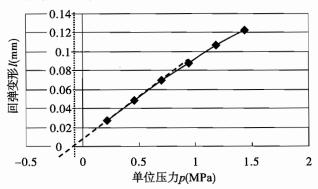


图 T 0808-1 单位压力与回弹变形关系曲线

5.3 用加载板上的计算单位压力 p 以及与相应的回弹变形 l 按式(T 0808-2)计算回弹模量。

$$E_{c} = \frac{ph}{l} \tag{T 0808-2}$$

式中: E_c ——抗压回弹模量(MPa);

p ——单位压力(MPa);

h ——试件高度(mm);

l ── 试件回弹变形(mm)。

6 结果整理

- 6.1 抗压回弹模量用整数表示。
- **6.2** 同一组试件试验中,采用 3 倍均方差方法剔除异常值,大试件 2~3 个异常值。异常值数量超过上述规定的试验重做。
- **6.3** 对于无机结合料稳定细粒土、中粒土,变异系数不超过10%;粗粒土,变异系数不超过15%。如不能保证变异系数小于上述规定,则还应按允许误差10%和90%概率重新计算增加试件数量,并另做新试验。新试验结果与老试验结果一并重新进行统计评定,直到变异系数满足上述规定。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);

- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度或压实度;
- (6) 吸水量以及测抗压回弹模量时的含水量(%);
- (7)抗压回弹模量(MPa),用整数表示;
- (8) n 个试验结果的最小值和最大值、平均值 E_c 、标准差 S 和变异系数 C_v (%)。

8 记录

本试验的记录格式见表 T 0808-1。

表 T 0808-1 室内抗压回弹模量试验记录表

工程名称	试件尺寸
路段范围	试验方法
材料名称	试 验 者
试样编号	校 核 者
最大粒径	试验日期

- ++ +b	* * * = 1		千分	分表读数(1/1 000m		北下同恐性見 2			
荷载 级数	单位压力 p (MPa)		加载			卸载		回弹变形 <i>l</i> (1/1 000mm)	抗压回弹模量 <i>E</i> 。 (MPa)	
-JX XX	(MIa)	左	右	平均	左	右	平均	(1/1/00011111)	(MIA)	
1										
2										
3										
4										
5										
6										

条文说明

整平试件的两个端面是本试验取得较好结果的关键,必须认真进行。首先,必须用平面加载刚性板放在试件顶面检查是否有翘动和脱空现象。实践证明,不需要用净浆整平的试件很少。

①为了保证试验过程中试件变形测量的可靠性,一方面选择稳定的、有足够精度的变形测量仪器(如千分表或位移传感器)。另一方面选择合理的荷载级位,荷载级位过小,试件变形量小,测量误差大;如荷载级位过大,造成试件损伤,影响下级荷载施加后试件回弹变形的可靠性。

②在测量回弹变形时,在试件顶面应至少放置两个相同精度的传感器或千分表,且二者应处在同一个直径的两端,距试件中心等距。在每级荷载作用下,两个传感器(或千分表)读数相差不宜超过50%,否则应重新试验。以两个传感器测量变形的平均值作为该级荷载作用下的变形值。由于路面材料的非线性,在荷载作用时会出现应力松弛或蠕变现象。为此,当出现应力松弛时,应及时补加荷载,最好采用应力控制模式的自动加载系统以维持试验过程中荷载的稳定;当出现蠕变现象时,为减小蠕变对变形测量的影响,应严格按照本规程要求的时间和荷载速率加载、卸载,并在荷载稳定时间的最后一刻读取传感器的变形读数。

③对于荷载施加的水平,宜不超过试件无侧限抗压强度的60%~70%,即施加的最大荷载为抗压

强度的60%~70%,并以此为标准等间隔划分出5~6个荷载级位。因此,在进行模量试验时,应首先进行强度试验,根据强度试验结果确定模量试验的荷载级位。

T0807—1994 无机结合料稳定材料室内抗压回弹模量试验方法 (承载板法)

1 适用范围

本方法适用于在室内对无机结合料稳定细粒土试件进行抗压回弹模量试验。

- 2 仪器设备
 - 2.1 杠杆式压力仪或其他合适的仪器:荷载量程大于1.5kN。
 - **2.2** 承载板:直径37.4mm,面积11cm²。
 - 2.3 千分表(1/1 000mm):两只。
 - 2.4 标准养护室。
 - 2.5 电子天平:量程 15kg,感量 0.1g;量程 4 000g,感量 0.01g。
 - 2.6 量筒、拌和工具、大小铝盒、烘箱等。
 - 2.7 机油:若干。
 - 2.8 适合测试范围的测力计。
 - 2.9 圆形钢板。
- 3 试件制备和养护
 - **3.1** 采用 φ150mm ×150mm 试件进行试验。
- 3.2 将具有代表性的风干试料(必要时,也可以在 50℃烘箱内烘干)用木锤捣碎或用木碾碾碎,但应避免破碎粒料的原粒径。将土过筛并进行分类,除去大于 4.75 mm 的颗粒备用。
 - 3.3 在预定做试验的前一天,取有代表性的试料测定其风干含水量。对于细粒土,试 113 —

样应不少于 100g。

- **3.4** 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
 - 3.5 稳定细粒土应做13个试件,并使试验结果的变异系数不超过15%。
 - 3.6 按照本规程 T 0843—2009 方法制备试件。
 - 3.7 按照本规程 T 0845—2009 的养生条件进行养生。

4 试验步骤

- **4.1** 承载板上单位压力的选定值:对于无机结合料稳定基层材料,用 0.5~0.7MPa;对于 无机结合料稳定底基层材料,用 0.2~0.4MPa。实际加载的最大单位压力应略大于选定值。
- **4.2** 将试件浸水 24h 后从水中取出,并用布擦干后放在杠杆式压力仪上,用小圆板将试件中心部分磨平(必要时用 0.25~0.5mm 的细砂填充表面细小孔隙)后,安置承载板。调平杠杆,使加砝码端略向下倾。安置千分表。
- **4.3** 预压: 先用拟施加的最大荷载的一半进行两次加载卸载预压试验, 使承载板与试件顶面紧密接触。第2次卸载后等待1min, 然后将千分表的短指针调到中间位置, 长指针调到0。记录千分表的原始读数。
- **4.4** 回弹变形测量:将预定的单位压力分成 5~6等份,作为每次施加的压力值。实际施加的荷载应较预定级数增加 1 级。施加第 1 级荷载(如为预定最大荷载的 1/6),待荷载作用达 1 min 时,记录千分表的读数。同时卸去荷载^①,让试件的弹性变形恢复,到 0.5 min时记录千分表的读数。施加第 2 级荷载(为预定最大荷载的 2/6),同前,待荷载作用 1 min,记录千分表的读数,卸去荷载。卸载后达 0.5 min 时,记录千分表的读数,并施加第 3 级荷载。如此逐级进行,直至记录下最后一级荷载下的回弹变形。

注①:卸除荷载时,一手扶住杠杆,轻轻取下砝码,不使杠杆弹起脱离承载板。

5 计算

- **5.1** 按式(T 0807-1) 计算每级荷载下的回弹变形 l 。 l = m载时平均读数 卸载后平均读数 (T 0807-1)
- **5.2** 以单位压力 p 为横坐标(向右)、回弹变形 l 为纵坐标(向下),绘制 p 与 l 关系曲线。若曲线开始段出现下凹现象,需进行修正。修正时,一般情况下将第 l 个和第 l 个元

验点取成直线,并延长此直线与纵坐标轴相交,此交点即为新原点。

5.3 按式(T0807-2)计算抗压回弹模量。

$$E_{c} = \frac{\pi pd}{4l} (1 - \mu^{2})$$
 (T 0807-2)

式中: E_c —抗压回弹模量(MPa);

p ——单位压力(MPa);

d ——承载板直径(mm);

l ——相应单位压力 p 的回弹变形(mm);

 μ ——泊松系数,可取 0.25。

5.4 计算全部试件的算术平均值、标准差和变异系数。

6 结果整理

- 6.1 抗压回弹模量用整数表示。
- **6.2** 同一组试件试验中,采用 3 倍均方差方法剔除异常值,大试件可以有 2~3 个异常值。异常值数量超过上述规定的试验重做。
- **6.3** 对于无机结合料稳定细粒土,要求模量试验结果的变异系数不超过 15%;如不能保证变异系数小于上述规定,则还应按允许误差 10% 和 90% 概率重新计算增加试件数量,并另做新试验。新试验结果与老试验结果一并重新进行统计评定,直到变异系数满足上述规定。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3) 重型击实的最佳含水量(%) 和最大干密度 (g/cm^3) ;
- (4) 无机结合料类型及剂量;
- (5)试件干密度或压实度;
- (6) 吸水量以及测抗压回弹模量时的含水量(%);
- (7) 抗压回弹模量(MPa),用整数表示;
- (8) n 个试验结果的最小值和最大值、平均值E、标准差S 和变异系数 C_{s} (%)。

8 记录

本试验的记录格式见表 T 0807-1。

表 T 0807-1 室内抗压回弹模量试验记录表

工程名称	承载板直径
路段范围	试 验 方 法
材料名称	试 验 者
试样编号	校 核 者
最大粒径	试验日期

# +5	* * -		千分	分表读数 (1/1 000m		* 医回觉横鼻 <i>E</i>		
荷载 级数	单位压力 p (MPa)		加载			卸载		回弹变形 <i>l</i> (1/1 000mm)	抗压回弹模量 <i>E</i> 。 (MPa)
-JX XX	(MI a)	左	右	平均	左	右	平均	(1/1/00011111)	(1411 a)
1									
2									
3									
4									
5									
6									

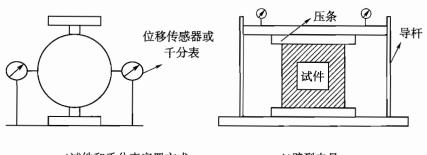
条文说明

抗压回弹模量试验结果的变异系数通常较大。如从备料、制件到抗压回弹模量试验都能仔细进行,则可将结果的偏差系数控制在15%(稳定细粒土)以内。试验数量的计算与T0805—1994条文说明相同。如试验结果的变异系数大于规定的15%,则应按T0805—1994条文说明中的公式计算所需的数量,然后增补所缺试件数。

车轮荷载作用在面层表面的单位压力为 0.7 MPa。当基层上为薄沥青面层时,基层顶面所受的单位压力接近 0.7 MPa。当沥青面层较厚时,基层顶面的单位压力不超过 0.5 MPa。所以承载板上的计算单位压力(也就是计算抗压回弹模量时用的单位压力)取 0.5~0.7 MPa。同理,确定底基层混合料的抗压回弹模量时,取计算单位压力 0.2 (二级及二级以上公路)~0.4 MPa(三级及三级以下公路)。

T 0852—2009 无机结合料稳定材料劈裂回弹模量试验方法

1 适用范围


本方法通过向圆柱形试件施加轴向荷载,测定试件在荷载变化时的轴向弹性变形,从 而计算材料的劈裂回弹模量。

2 仪器设备

2.1 压力机或万能试验机(也可用路面强度试验仪和测力计):压力机应符合现行《液

压式压力试验机》(GB/T 3722)及《试验机通用技术要求》(GB/T 2611)中的要求,其测量精度为±1%,同时应具有加载速率指示装置或加载速率控制装置。上下压板平整并有足够刚度,可以均匀地连续加载卸载,可以保持固定荷载。开机停机均灵活自如,能够满足试件吨位要求,且压力机加载速率可以有效控制在1mm/min。

- **2.2** 数据采集系统:包括荷载传感器(1个)、位移传感器(或千分表)(4个)、荷载计数器以及数据采集仪。
 - 2.3 劈裂夹具:如图 T 0852-1 所示。

a)试件和千分表安置方式

b)劈裂夹具

图 T 0852-1 劈裂回弹模量试验装置示意图

压条采用半径与试件半径相同的弧面压条,其长度应大于试件的高度。不同尺寸试件采用的压条宽度和弧面半径见表 T 0852-1。

试件尺寸(mm)	压条宽度(mm)	弧面半径(mm)
φ100 × 100	12.70	50
φ150 × 150	18.75	75

表 T 0852-1 不同尺寸试件对应的压条尺寸

- 2.4 标准养护室。
- 2.5 水槽:深度应大于试件高度 50mm。
- 2.6 天平:量程 4 000g,感量 0.01g;量程 15kg,感量 0.1g。
- 2.7 球形支座。
- 2.8 机油:若干。
- 2.9 圆形钢板。

3 试件制备和养护

- **3.1** 对于细粒式、中粒式混合料,采用 ϕ 100mm ×100mm 的圆柱形试件;对于粗粒式混合料,采用 ϕ 150mm ×150mm 的圆柱形试件。试验荷载为静态荷载。
 - 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
- 3.3 试件数量:无机结合料稳定细粒土,应制备不少于9个试件,并要求模量试验结果的变异系数不超过10%;无机结合料稳定中粒土,应制备不少于15个试件,并要求模量试验结果的变异系数不超过10%;无机结合料稳定粗粒土,应制备不少于19个试件,并要求模量试验结果的变异系数不超过15%。
 - 3.4 按照本规程 T 0843-2009 方法制备试件。
- 3.5 按照本规程 T 0845—2009 标准养生方法进行养生,水泥稳定类土养生龄期为90d,石灰或粉煤灰稳定类土养生龄期 180d。

4 试验步骤

- **4.1** 根据试验材料的类型和一般的工程经验,选择合适量程的测力计和试验机,施加的荷载应大于量程的 20% 且小于量程的 80%。球形支座和上下压条涂上机油,使球形支座能够灵活转动。
- **4.2** 将已浸水一昼夜的试件从水中取出,用软布吸去试件表面的水分,并称试件的质量。
- **4.3** 试件高度的测试:沿圆周四等分点用游标卡尺测量 4 点高度,精确至 0.1 mm,以其平均值计,在试件两侧通过圆心画上十字标记。
- **4.4** 将试件置于试验台夹具的上、下压条之间,安放好上压条与侧面的十字画线对准,上下压条应居中。
- **4.5** 按照本规程 T 0806—1994 方法测定混合料的劈裂强度,作为劈裂回弹模量试验的破坏荷载 P。
 - 4.6 在试件两边分别等距离各安放1个位移传感器或千分表。
 - 4.7 预压: 先用拟施加的最大载荷的一半进行两次加载卸载预压试验, 使加载顶板与

试件表面紧密接触。每次卸载后等待 1 min。如采用千分表测量变形时,将千分表的短指 针调到中间位置,并将长指针调到0,记录千分表的原始读数。

回弹变形测量:将预定的单位压力分成5~6等份,作为每次施加的压力值。设定 的最大压力值不宜超过破坏荷载的 0.6~0.7 倍。实际施加的荷载应较预定级数增加 1 级。施加第1级荷载(如为预定最大荷载的1/5),待荷载作用达1min时,记录千分表的 读数,同时卸去荷载,让试件的弹性变形恢复。到 0.5 min 时记录千分表的读数,施加第 2 级荷载(为预定最大荷载的 2/5),同前,待荷载作用 1min,记录千分表的读数,卸去荷载。 卸载后达 0.5 min 时, 再记录千分表的读数, 并施加第 3级荷载。如此逐级进行, 直至记录 下最后一级荷载下的回弹变形。

5 计算

- **5.1** 按式(T 0852-1) 计算每级荷载下的试件竖向回弹变形 l_{y} 。 l_v = 加载时平均读数 - 卸载后平均读数 (T 0852-1)
- **5.2** 以单位压力 $p p_0$ 为横坐标(向右)、竖向回弹变形 l_v 为纵坐标(向下)绘制 p 与 l_{Y} 关系曲线。若曲线开始段出现下凹现象,需进行修正。修正时,一般情况下将第1个和 第2个试验点取成直线,并延长此直线与纵坐标轴相交,此交点即为新原点。
 - 5.3 按式(T 0852-2)计算劈裂回弹模量。

$$E_{\rm i} = \frac{p - p_0}{dl_{\rm X}} (0.27 + 1.0\mu)$$
 (T 0852-2)

式中: E_i 一一劈裂回弹模量(MPa);

p ——各级荷载(N);

p₀ ──初荷载(N); d ──试件直径(mm);

l_v——水平回弹变形(mm),在没有条件测水平变形时,可用式(T0852-3)计算水平 方向变形:

$$l_{\rm x} = \frac{l_{\rm Y} \times (0.135 + 0.5\mu)}{1.794 - 0.0314\mu}$$
 (T 0852-3)

 l_{y} ——竖向回弹变形(mm);

 μ ——泊松比,可取 0.25。

- 5.4 计算全部试件的算术平均值、标准差和变异系数。
- 6 结果整理
 - 6.1 劈裂回弹模量用整数表示。

- **6.2** 同一组试件试验中,采用 3 倍均方差方法剔除异常值,大试件 2~3 个异常值。异常值数量超过上述规定的试验重做。
- **6.3** 无机结合料稳定细粒土、中粒土,试验结果的变异系数不超过10%;粗粒土,变异系数不超过15%。如不能保证试验结果的变异系数小于上述规定,则应按允许误差10%和90%概率重新计算所需的试件数量,增加试件数量并另做新试验。新试验结果与老试验结果一并重新进行统计评定,直到变异系数满足上述规定。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量:
- (5)试件干密度或压实度;
- (6) 吸水量以及测回弹模量时的含水量(%);
- (7) 劈裂回弹模量(MPa),用整数表示;
- (8) n 个试验结果的最小值和最大值、平均值 E_1 、标准差S 和变异系数 C_2 (%)。

8 记录

本试验的记录格式见表 T 0852-2。

表 T 0852-2 室内劈裂回弹模量试验记录表

工程名称	试件尺寸
路段范围	试验方法
材料名称	试 验 者
试样编号	校 核 者
最大粒径	讨 验日期

荷载级数				Y方向 千分表读数(1/1 000mm) 加载					X方向 千分表读数(1/1 000mm) 加载 卸载					回弹形变 <i>l</i> (1/1 000mm)		劈裂回弹模量 E _i (MPa)
-3X XX	(mra)	左	右	平均	左	右	平均	左	右	平均	左	右	平均	l_{x}	$l_{\scriptscriptstyle m Y}$	
1																
2																
3																
4																
5																
6																

T 0853—2009 无机结合料稳定材料弯拉回弹模量试验方法

1 适用范围

本方法采用三分点加载的方法测定无机结合料稳定材料在静态荷载作用下的弯拉回弹模量。

2 仪器设备

- 2.1 压力机或万能试验机(也可用路面强度试验仪和测力计):压力机应符合现行《液压式压力试验机》(GB/T 3722)及《试验机通用技术要求》(GB/T 2611)中的要求,其测量精度为±1%,同时应具有加载速率指示装置或加载速率控制装置。上下压板平整并有足够刚度,可以均匀地连续加载卸载,可以保持固定荷载。开机停机均灵活自如,能够满足试件吨位要求,且压力机加载速率可以有效控制在1mm/min。
- **2.2** 数据采集系统:包括荷载传感器、位移传感器、荷载计数器以及数据采集仪。位移传感器用于测量跨中竖向变形,安装于试件跨中的两侧。
 - 2.3 加载模具:如图 T 0853-1 所示。

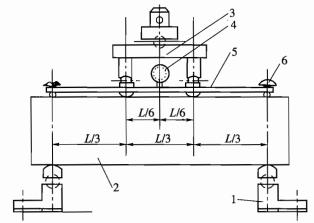


图 T 0853-1 弯拉回弹模量试验装置示意图(尺寸单位:mm) 1-可移动支座;2-试件;3-加载支座;4-千分表;5-千分表架;6-螺杆

- 2.4 标准养护室。
- 2.5 电子天平:量程 15kg,感量 0.1g;量程 4 000g,感量 0.01g。
- 2.6 台秤:量程50kg,感量5g。
- 2.7 球形支座。

3 试件制备和养护

- **3.1** 根据混合料粒径的大小,选择不同尺寸的试件尺寸:中梁,100mm×100mm×400mm,适用于细粒土和中粒土^①;大梁,150mm×150mm×550mm,适用于粗粒土。
 - 注①:由于大梁试件的成型难度较大,当试验室不具备成型条件时,中梁试件的最大公称粒径可放宽到 26.5mm。
- 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
- 3.3 无机结合料稳定细粒土,应制备不少于9个试件,并要求模量试验结果的变异系数不超过10%;无机结合料稳定中粒土,应制备不少于15个试件,并要求模量试验结果的变异系数不超过10%;无机结合料稳定粗粒土,应制备不少于19个试件,并要求模量试验结果的变异系数不超过15%。
 - 3.4 按照本规程 T 0844-2009 方法制备试件。
- 3.5 按照本规程 T 0845—2009 标准养生方法进行养生,水泥稳定类土养生龄期为90d,石灰或粉煤灰稳定类土养生龄期180d。

4 试验准备

- **4.1** 根据试验材料的类型和一般的工程经验,选择合适量程的测力计和试验机,对被测试件施加的压力应在设备量程的 20% ~80% 范围内。如采用压力机系统,需调试设备,设定好加载速率。
- **4.2** 球形支座涂上机油,使球形支座能够灵活转动,并安放在上压头上。在上下压块的左右两个半圆形压条上涂上机油。
- **4.3** 按照本规程 T 0851—2009 方法测定混合料的弯拉强度,作为弯拉回弹模量试验的破坏荷载 P。
- **4.4** 将已浸水一昼夜的试件从水中取出,用软布吸去试件表面的水分,并称试件的质量。在试件中部量出其宽度和高度,精确至1mm。
 - 4.5 在试件侧面(平行于试件成型时的压力方向)标出三分点位置。
- **4.6** 将试件安放在试架上,荷载方向与试件成型时的压力方向一致,上下压头应位于试件三分点位置。

- 4.7 在试件中部的顶面两侧分别安放1个千分表或位移传感器。
- 4.8 安放球形支座。
- **4.9** 预压: 先用拟施加的最大载荷的一半进行两次加载卸载预压试验(设定的最大压力值不宜超过破坏荷载的 0.6~0.7 倍),使加载顶板与试件表面紧密接触。每两次卸载后等待 1 min。如采用千分表测量变形时,将千分表的短指针调到中间位置,并将长指针调到 0,记录千分表的原始读数。
- **4.10** 回弹变形测量:将预定的单位压力分成 5~6等份,作为每次施加的压力值。实际施加的荷载应较预定级数增加 1 级。施加第 1 级荷载(如为预定最大荷载的 1/5),待荷载作用达 1 min 时,记录千分表的读数,同时卸去荷载,让试件的弹性变形恢复。到 0.5 min时记录千分表的读数,施加第 2 级荷载(为预定最大荷载的 2/5),同前,待荷载作用 1 min,记录千分表的读数,卸去荷载。卸载后达 0.5 min 时,再记录千分表的读数,并施加第 3 级荷载。如此逐级进行,直至记录下最后一级荷载下的回弹变形。

5 计算

- **5.2** 以单位压力 $p p_0$ 为横坐标(向右)、回弹变形 l 为纵坐标(向下)绘制 p 与 l 关系曲线。若曲线开始段出现下凹现象,需进行修正。修正时,一般情况下将第 l 个和第 l 个 试验点取成直线,并延长此直线与纵坐标轴相交,此交点即为新原点。
 - **5.3** 按式(T 0853-2)计算弯拉回弹模量。

$$E_{s} = \frac{23L^{3}(p - p_{0})}{108 \times b \times h^{3} \times l}$$
 (T 0853-2)

式中: E_s ——弯拉回弹模量(MPa);

p — 施加的各级荷载(N);

 p_0 ——施加的最小荷载(N);

L ——试件跨径(mm);

l ──跨中回弹变形(mm);

b ——跨中断面的宽度(mm);

h ——跨中断面的高度(mm)。

6 结果整理

6.1 弯拉回弹模量用整数表示。

- **6.2** 同一组试件试验中,采用 3 倍均方差方法剔除异常值。小梁可以有 1 个异常值,中梁 1~2 个异常值,大梁 2~3 个异常值。异常值数量超过上述规定的试验重做。
- **6.3** 同一组试验的变异系数 $C_v(\%)$ 符合下列规定,方为有效试验:细粒土、中粒土,中梁, $C_v \le 10\%$;粗粒土,大梁, $C_v \le 15\%$ 。如不能保证变异系数小于上述规定,则还应按允许误差 10% 和 90% 概率重新计算增加试件数量,并另做新试验。新试验结果与老试验结果一并重新进行统计评定,直到变异系数满足上述规定。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度或压实度;
- (6) 吸水量以及测弯拉回弹模量时的含水量(%);
- (7)弯拉回弹模量(MPa),用整数表示;
- (8) n 个试验结果的最小值和最大值、平均值 E_s 、标准差 S 和变异系数 C_v (%)。

8 记录

本试验的记录格式见表 T 0853-1。

表 T 0853-1 室内弯拉回弹模量试验记录表

工程名称	试件尺寸
路段范围	试验方法
材料名称	试 验 者
试样编号	校 核 者
最大粒径	讨验日期

	单位压力 p (MPa)	千分表读数(1/1 000mm)							
荷载 级数		加载			卸载			回弹变形 l (1/1 000mm)	弯拉回弹模量 E _s (MPa)
		左	右	平均	左	右	平均		, ,
1									
2									
3		_							
4									
5									
6									

条文说明

现在一些设备的加载系统(包括 MTS)具有能直接测定压头处变形的功能,为了简化试验步骤和方法,有些试验操作者直接取压头处的变形值作为弯拉变形值。由于试验机促动器的测变形装置精度不够,导致所测试的值偏小。因此对具有试验机促动器的压力设备,必须在保证测试精度足够的情况下,才可直接用来测试,否则必须单独安装千分表或传感器。

T 0854—2009 无机结合料稳定材料干缩试验方法

1 适用范围

本方法适用于测定无机结合料稳定材料失水收缩的程度和干缩系数计算。该方法是 将室内成型的梁式试件放置在收缩仪上,在收缩仪的两端安置千分表,当试件失水后,试 件的整体收缩会引起千分表触头移动,并使得千分表产生读数变化。通过千分表数值的 变化测定试件的收缩变形值。

2 仪器设备

2.1 收缩仪(图 T 0854-1):两端设计为装千分表或位移计,中间能放置不同尺寸的试件。

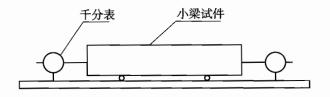


图 T 0854-1 干缩试验装置示意图

- 2.2 千分表或位移计:满足 0.001mm 的精度要求,且指针转动灵敏。
- 2.3 干缩室(箱):室(箱)内控制温度为20℃±1℃,相对湿度为60%±5%。室(箱)内配有温度、湿度自动记录仪,记录温度、湿度变化。置于恒温室中的干缩箱内须放入干燥剂用于除湿。
 - 2.4 支脚:采用薄的玻璃片,如载玻片。
 - 2.5 玻璃棒:若干,长度应大于试件宽度 1cm。
 - 2.6 电子天平:量程 4 000g,感量 0.01g;量程 15kg,感量 0.1g。

- 2.7 游标卡尺:分度 0.01 mm。
- 2.8 502 胶。
- 3 试件制备和养护
- **3.1** 根据混合料粒径的大小,选择不同尺寸的试件:小梁, $50 \text{mm} \times 50 \text{mm} \times 200 \text{mm}$,适用于细粒土;中梁, $100 \text{mm} \times 100 \text{mm} \times 400 \text{mm}$,适用于中粒土^①;大梁, $150 \text{mm} \times 150 \text{mm} \times 550 \text{mm}$,适用于粗粒土。
 - 注①:由于大梁试件的成型难度较大,当试验室不具备成型条件时,中梁试件的最大公称粒径可放宽到 26.5mm。
 - 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
- **3.3** 试件数量:同一配比的混合料 6 个试件为一组,3 个试件用来测定材料的收缩变形,另外预留 3 个标准试件,用于测量材料的干缩失水率。
 - 3.4 按照本规程 T 0844—2009 方法制备试件。
 - 3.5 按照本规程 T 0845—2009 标准养生方法进行养生, 一般龄期为 7d。

4 试验步骤

- **4.1** 试件成型后在标准温度与湿度下养生 7d 后,将饱水后的试件表面水擦干。并采用游标卡尺测定初始长度,长度应重复测定 3次,取算术平均值作为基准长度的测定值。至无明显水迹后称取试件初始质量 m_0 。
- **4.2** 取出试件,将试件长轴端磨平并在端面上使用 502 胶黏结有机玻璃片,待 502 胶凝结后将位移计(千分表)夹具固定在收缩仪上,在收缩仪上安放涂有润滑剂的玻璃棒,使试件在收缩时减少与收缩仪的摩擦。安装后效果如图 T 0854-2 所示。

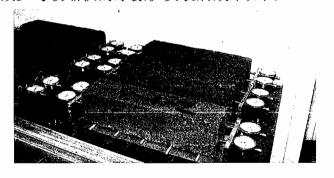


图 T 0854-2 试验过程

4.3 收缩仪连同试件一起放入干缩室。将千分表头顶到有机玻璃片上,使表针走动到

较大数值,一批试件都架好后使千分表指针归零。

- **4.4** 从移入干缩室的时间起计算,在开始试验的一个星期内,每天读一次数,记下每个试件的每个表的读数 $X_{i,1}$ 、 $X_{i,2}$ 、 $X_{i,3}$ 、 $X_{i,4}$ (精确至 0. 001 mm), 称量标准试件的质量 m_i ,在 7d 以后每两天读一次数,到 1 个月后,于 60d、90d、120d、150d、180d 读取千分表的读数。并称取收缩仪和试件的总质量。
 - **4.5** 在干缩观测结束后,将标准试件放到烘箱内烘干至恒量 m_p 。

5 计算

按式(T0854-1)~式(T0854-5)进行计算。

失水率:

$$w_{i} = (m_{i} - m_{i+1})/m_{p}$$
 (T 0854-1)

干缩量:

$$\delta_{i} = \left(\sum_{i=1}^{4} X_{i,j} - \sum_{i=1}^{4} X_{i+1,j}\right)/2 \tag{T 0854-2}$$

干缩应变:

$$\varepsilon_i = \delta_i / l$$
 (T 0854-3)

干缩系数:

$$\alpha_{\rm di} = \varepsilon_{\rm i}/w_{\rm i} \tag{T 0854-4}$$

总干缩系数:

$$\alpha_{\rm d} = \frac{\sum \varepsilon_{\rm i}}{\sum w_{\rm c}} \tag{T 0854-5}$$

式中: w_i ——第 i 次失水率(%);

 δ_i — 第 i 次观测干缩量(mm);

 ε ——第i次干缩应变(%);

 α_{di} 一第 i 次干缩系数(%);

 m_i — 第 i 次标准试件称量质量(g);

 $X_{i,i}$ — 第 i 次测试时第 j 个千分表的读数(mm);

l ——标准试件的长度(mm);

m。——标准试件烘干后恒量(g)。

6 数据整理

- 6.1 干缩系数保留 4 位有效数字。
- **6.2** 每种混合料进行 3 个样本的平行试验。当 3 个试件的级差与 3 个试件的平均值不超过 30% 时,为有效试验,取平均值作为这种混合料的干缩系数;否则重新进行试验。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度(g/cm³)或压实度(%);
- (6)环境温度和湿度;
- (7)不同时间段试件的平均干缩率:
- (8)需要说明的其他内容。

8 记录

本试验的记录格式见表 T 0854-1。

表 T 0854-1 无机结合料干缩试验记录表

材料名称_试样编号_			试件标准质量 试验者 校核者 试验日期					
时间 (d)	试件质量 (g)	失水率 (%)	左表读数 (0.001mm)	右表读数 (0.001mm)	干缩量 (0.001mm)	干缩系数		
		_						

条文说明

在试件制作过程中应注意插捣均匀,确保试件不出现明显离析,试件之间外观差别较小。测量含水量的标准试件应具有代表性,条件许可的情况下,可考虑增加标准试件的个数,以减少试验误差。在试验前,应确保玻璃棒在收缩仪垫面上滚动正常,仔细检查千分表灵敏性和指针走向。在粘贴载玻片前,对试件的端部进行适当的处理;对于端部空隙较大的试件,在养生前,应采用与制作试件相同配比的水泥胶砂将端部空隙处抹平后一块养生。粘贴载玻片时,应将502胶水均匀涂敷于载玻片,将载玻片黏附到千分表表头所对试件端部部分,并确保载玻片与试件端部完全接触,轻按数秒后,待载玻片与试件端部黏结牢固后进行后续工作。

将试件安放到收缩仪上,两端距离均匀。将千分表顶到试件端部载玻片上,使千分表走动某一较

大数值,并注意表指针所走的方向和读数,试验时按照与安放时千分表指针所走相反方向读数。待千分表走动到某一较大数值后用螺丝刀固定千分表,并检查表针是否走动灵敏。待千分表安放完毕后,将试件上的所有千分表指针归零,注意在归零过程中的互相干扰,应反复调整。记录试件安放小环境下的温度和湿度。在试验开始阶段应增加读数次数,如每隔 $2 \sim 3h$ 读一次数,待表走动较为缓慢后可延长读数间隔时间。试验结束后,将试件烘干至恒量,并量取试件的标准长度 l。

T 0855—2009 无机结合料稳定材料温缩试验方法

1 目的和适用范围

本方法适用于测定无机结合料稳定材料在温度降低时的收缩系数。测定无机结合料稳定材料在含水量不变(干燥)情况下的温度收缩系数。如采用在非干燥条件下,测定温度和失水的共同收缩,测试方法同干燥情况,但同时需要增加试件测试试件的失水率,将失水收缩系数计人。

2 仪器设备

- 2.1 游标卡尺。
- **2.2** 高低温交变试验箱:可以控制升降温速率和具有保温功能、保湿功能,具有可编程控制降温功能。
 - 2.3 仪表法
 - 2.3.1 千分表或位移计。
- **2.3.2** 收缩仪:收缩仪必须为殷钢制,否则要安装标准块,标定收缩仪在温度收缩下的变形。
 - 2.3.3 支脚:采用薄的有机玻璃片,如载玻片。
 - 2.3.4 光滑玻璃棒。
 - 2.4 应变片法
 - 2.4.1 静态电阻应变仪:具有相对固定的灵敏系数;提供应变信号采集和记录。
 - **2.4.2** 应变片:阻值为 120Ω 、标距为 80mm 的箔式电阻应变片。

- 2.4.3 应变胶:502 胶。
- 2.4.4 手持式电动砂轮磨光机,粗砂纸、细砂纸。
- 2.4.5 电烙铁、焊锡、连接导线、细塑料套管、胶布。
- 2.4.6 温度补偿标准件(温度补偿片):采用陶瓷片。
- 3 试件制备和养护
- **3.1** 根据混合料粒径的大小,选择不同尺寸的试件:小梁,50mm×50mm×200mm,适用于细粒土;中梁,100mm×100mm×400mm,适用于中粒土^①;大梁,150mm×150mm×550mm,适用于粗粒土。

注①:由于大梁试件的成型难度较大,当试验室不具备成型条件时,中梁试件的最大公称粒径可放宽到 26.5mm。

- 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
 - 3.3 试件数量:同一配比的混合料3个试件为一组,测定材料的收缩变形。
 - 3.4 按照本规程 T 0844—2009 方法制备试件。
- 3.5 按照本规程 T 0845—2009 标准养生方法进行养生,一般龄期为 7d。养生龄期的最后 1d,试件饱水 24h。
- **3.6** 温缩试验的温度确定需根据材料所在环境的温度要求和试验目的确定。可采用的温度范围是 60 ~ -25 ℃。
- 4 试验步骤
 - 4.1 仪表法
- **4.1.1** 养生结束后,将试件放入 105℃的烘箱中烘 10~12h 至恒量,使试件中没有自由水存在。烘干后将试件放到干燥通风的地方至常温。
- **4.1.2** 试验前用游标卡尺测量试件的初始长度,长度测量应在试件的两端和中间部位各测量1次,取3次测量的平均值。
 - 4.1.3 在收缩仪的底面放上涂有润滑剂的玻璃棒。

- 4.1.4 对试件的端部进行打磨处理或直接在端部贴上支脚(薄的玻璃片)。
- **4.1.5** 将试件的光面朝下,安放到收缩仪上,装置好千分表,千分表的表头应在贴好的玻璃片中间位置。
- **4.1.6** 设定高低温交变试验箱的控温程序,包括温缩试验的温度以及降温速率 (0.5%/min)、保温时间(3h)。
- **4.1.7** 将试件放入高低温交变试验箱中,将千分表顶到玻璃片上使表走动到较大的数值,待一批试件统一架好后归零。
- **4.1.8** 试验从高温开始,逐级降温,并测定试件相应的收缩量。每个试件一般测定 5~6个温度级别,每个级别的温度差一般为 10℃。按照降温速率的要求,当温度降到设定的级位时,保温 3h。在保温结束前的 5min 内读取千分表读数。两只千分表伸长的和为试件在降温过程中缩短的总长度。

4.2 应变片法

4.2.1 将达到龄期的试件放入温度为 105℃的烘箱中烘 10~12h 至恒量。

4.2.2 试件表面处理:

- (1)对于表面较平整且相对较致密的试件,可在试件两侧面表面中心位置比应变片面积稍大的范围内用砂纸磨平或用电动砂轮轻轻磨平,并用电吹风吹掉表面浮灰。
- (2)对于表面粗糙的试件来说,在烘干前应在两个对应侧面上预定的贴片区用相应的结合料浆(水泥稳定类用水泥浆,二灰稳定类用二灰浆)涂抹一层,试件烘干后需要对涂层进行打磨。打磨的标准是:涂层能够填充试件表面的孔隙或坑槽,但不能独立成层。

4.2.3 粘贴应变片:

- (1)用铅笔和直尺画出试件两侧的长和宽方向的中轴线,供贴应变片参照。取出两个电阻应变片,分别在底面涂上应变胶,并立即粘于试件两侧表面,压上塑料纸,并排去应变片与试件之间的气泡,应变片在长和宽两个方向上均应位于试件中轴线上。
- (2)温度补偿片表面平整,不需要表面处理。应变片粘贴方法同上,一组待测试件共用一个温度补偿标准件。

4.2.4 电线连接:

应变片粘贴完毕且应变胶固化后可以连线。试件上的两个电阻应变片采用串联的方

法(图 T 0855-1)。为防止应变片相邻两引线接触短路,宜在引线端部套上细的塑料套管,并把端部引线用胶布固定在试件上。连线时各导线的端头用电烙铁焊接。温度补偿片上的两个应变片采用相同的连接方法。当所有试件和温度补偿片上的应变片连接完毕后,分别将各自的引线接入静态应变仪。电线和应变片的连接方式参考应变仪的说明书。

- 4.2.5 高低温交变试验箱温度变化的设定同千分表法。
- 4.2.6 将连接好的试件和温度补偿片一同放入最高温度 已经设定好的高低温交变试验箱中,试件可以横向卧式放置, 底面最好垫置可滚动的光圆钢筋。也可以将试件竖向放置,关

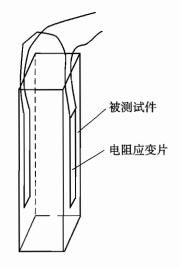


图 T 0855-1 应变片粘贴示意图

好箱门。启动试验箱控温程序,平衡应变仪各测试通道,开始读数并记录应变值。

4.2.7 人工读数应该在恒温段的最后 5min 内完成。采用计算机控制自动读数时, 应该与试验箱控温程序相协调。

5 计算

5.1 仪表法

温缩变形的结果是两个千分表变形的和除以试件的长度,用百分率表示。 温缩应变:

$$\varepsilon_{i} = \frac{l_{i} - l_{i+1}}{L_{0}} \tag{T 0855-1}$$

温缩系数:

$$\alpha_{t} = \frac{\varepsilon_{i}}{t_{i} - t_{i+1}} \tag{T 0855-2}$$

式中: l_i ——第i个温度区间的千分表读数和的平均值(mm);

 t_i ——温度控制程序设定的第 i 个温度区间($^{\circ}$);

 L_0 ——试件的初始长度,由于相对于试件的长度而言,温缩变形很小,因此以试验前测定的试件长度 L_0 计(mm);

 ε . — 第 i 个温度下的平均收缩应变(%);

α,——温缩系数,指单位温度变化下材料的线收缩系数。

5.2 应变片法

温缩系数:

$$\alpha_{t} = \frac{\varepsilon_{i}}{t_{i} - t_{i-1}} + \beta_{s}$$

$$-132 -$$
(T 0855-3)

式中: β_{s} ——温度补偿标准件的线膨胀系数。

6 结果整理

- 6.1 温缩系数保留 4 位有效数字。
- **6.2** 每种混合料进行 3 个样本的平行试验。当 3 个试件的级差不超过 3 个试件平均值的 30%时,为有效试验,取平均值作为这种混合料的温缩系数;否则重新进行试验。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度 (g/cm^3) ;
- (4) 无机结合料类型及剂量;
- (5)试件干密度或压实度;
- (6)环境温度和湿度;
- (7)试件平均温缩系数;
- (8)需要说明的其他内容。

8 记录

本试验的记录格式见表 T 0855-1。

表 T 0855-1 无机结合料温缩试验记录表

路段范围	工程名称_				
	路段范围				
最大粒径 试验日期	材料名称_				
	试样编号_				
温度级别 记录时间 左表读数 左表读数 温缩变形量	最大粒径_				
温度以外 尼尔内内 在农民 有农民 温和文//里 海原	温度级别				
(°C) (min) (0.001mm) (0.001mm) 温缩	(°C)				

(で) (min) (0.001mm) (0.001mm) (0.001mm) 温缩系数

条文说明

仪表法是采用千分表测量试件的收缩变形,将室内成型的梁式试件放置在收缩仪上,在收缩仪的 两端安置千分表;当温度变化时,试件的整体收缩会引起千分表触头移动,并使得千分表产生读数变 化,通过千分表数值的变化测定试件的收缩变形值。应变片法是用电阻应变片测量试件的收缩变形。 电阻应变片法的原理是将电阻应变片粘贴在被测试件的表面上,当试件受力变形时,金属电阻丝承受 拉伸或压缩变形的同时,电阻也将发生变化。在一定的应变范围内,电阻丝的电阻改变率与应变成正 比。在测试温度发生变化后,应变片电阻丝的电阻也随温度变化而改变。若不加处理,测得的应变将 包含温度变化的影响,不能真实反映构件因受载荷引起的应变。

仪表法的金属基座应同试件一起放入高低温交变试验箱。金属基座必须采用温度收缩系数小的材料,需要用殷钢特制,或者采用预知变形的材料制作。如果材料的温缩应变不明确,就应采用温缩变形小的温度补偿片对收缩仪进行标定。应变片法温度补偿的目的是要测试应变片电阻因温度引起的误差。

温度补偿片一般采用陶瓷片,由于种类繁多,且对试验结果有重要影响,宜统一选用人工合成无机 硅酸盐材料,其热膨胀系数比半刚性基层材料的收缩系数小一个数量级,可以满足要求。

一般来说仪表法精度不够高,但操作相对容易。

应变片法的操作相对比较复杂,对试验结果影响的因素较多。为了使各种影响最小化,需要对其使用的材料进行统一。电阻应变片统一采用箔式应变片,温度补偿片统一用人工合成的无机硅酸盐材料的补偿片,应变胶黏剂统一采用 502 胶,连接导线采用屏蔽线。

应变片法中,为了提高测试的精度,通常在补偿片和试件上分别用两个电阻应变片串联使用。

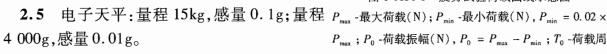
应变片法中,试件的表面处理过程中,最为理想的状况是水泥仅仅用来填充表面的凹陷,而不单独 形成一层。因此处理过的表面也应打磨至能够看到露出的粗集料。

应变片的粘贴是应变测量中非常关键的步骤之一。这一工作的好坏,直接影响胶的黏结质量,乃至测量精度。如果贴片不严格,技术不熟练,即使使用最好的应变片也无济于事。应变片应沿长度方向粘贴在试件表面的正中部。粘贴过程中,在应变片粘贴范围内涂胶厚度越薄越好,注意不要让应变片的两个引线粘在一起,以免短路。应变片粘贴完成后,为防止试件搬动过程中由于电线的带动而扯断应变片的引线,需要用细绳或细铁丝将电线牢固地捆绑在试件表面。

应变片的引线产生的热输出是导致测量不稳定的重要原因,导线应力求在种类、规格、长度和引线路径上一致。因此应将相同引线拉齐绑扎成束,沿干燥、温度较恒定的路径引至恒温箱中,之后再用电烙铁连接。

另外为了保证测试精度,应变片法测试过程中还需注意以下几点:应保证所有连接引线牢固可靠,一般采用焊锡焊牢;为了提高测试精度,系统应预热 30min;系统必须接地,如果系统接地不好,将会产生一定的漂移,稳定度也将受到影响;每通道各测点所有电阻应变片的对外接线均应尽量短,长度也应相等;应避免将仪器置于强电场中;静态应变仪必须放在合适的位置上使用,切勿将其倾斜或倒置使用;输入、输出双绞线应尽量避免靠近电力线、变压器及其他干扰源。

T 0856—2009 无机结合料稳定材料疲劳试验方法


1 适用范围

本方法适用于无机结合料稳定材料以及贫混凝土材料的疲劳试验。试验采用三分点施加 Havesine 波的动态周期性的压应力荷载模式进行疲劳试验。

2 仪器设备及相关参数

2.1 试验机:即应力控制系统,要求应能施加一定频率范围、荷载持续时间及不同大小的应力,可用能产生需要波形的电动液压试验机,要求精度达到 5N。应保证试验机能够施加稳定动态荷载。施加的荷载波形如图T 0856-1所示。

- **2.2** 数据采集系统:包括荷载传感器、位移传感器、荷载计数器以及数据采集仪。位移传感器用于测量跨中竖向变形,安装于试件跨中的两侧。
 - 2.3 加载模具:如图 T 0851-1 所示。
 - 2.4 标准养护室。

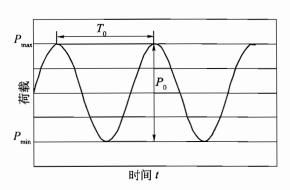


图 T 0856-1 疲劳试验荷载曲线示意图

期, $T_0 = \frac{1}{f}$, f 为荷载频率,标准频率为 10Hz

3 试件制备和养护

3.1 试验采用梁式试件,根据土的粒径大小选择小梁、中梁或大梁试件。小梁适用于细粒土;中梁适用于中粒土^①;大梁适用于粗粒土。

注①:由于大梁试件的成型难度较大,当试验室不具备成型条件时,中梁试件的最大公称粒径可放宽到 26.5mm。

- 3.2 由于混合料疲劳试验的变异性较大,为了得到比较可靠的试验结果,对于一种应力(应变)水平(或应力强度比水平),平行试验的样本量不宜小于:小梁 6 根,中梁 9 根,大梁 13 根。为评价某种混合料的疲劳性能,得到相关的疲劳寿命曲线,应至少进行 4 个应力(应变)水平(或应力强度比水平)的试验。试验应准备足够的试件数目,并考虑一定量的备用件(不少于 10%)。按照本规程 T 0844—2009 方法制备试件。
- 3.3 对于水泥稳定类材料,一般进行 90d 龄期的疲劳试验;对于石灰或粉煤灰稳定类材料,一般进行 180d 龄期的疲劳试验。根据科研项目的需要,试验人员也可采用适当的龄期。由于疲劳试验的周期比较长,试件的成型准备应考虑疲劳试验时试件的实际龄期,同一组试验的龄期误差不宜超过 ±3d。
- **3.4** 按照本规程 T 0845—2009 标准养生方法进行养生。养生龄期的最后 1d,试件饱水 24h。应该将试件浸泡在水中,水面高于试件顶面约 2.5cm。在浸泡于水中之前,应再次称试件的质量 m_3 。
- **3.5** 饱水后,将试件表面水擦干,重新测量试件的质量和几何尺寸;然后用油笔在试件的三分点位置作出标记,以便下步试验时准确放置夹具。

4 试验步骤

4.1 检查试验的机械设备是否正常。由于疲劳试验的周期比较长,应着重检查试验系——135—

统的电力供应是否正常。计算机等控制系统的电源应备有延时电源,以防突然断电造成 试验数据的丢失和设备的损坏。选择合适的荷载传感器和位移(应变)传感器的量程,以 确保测量结果精度的可靠性。

- **4.2** 根据试验目的,编制有关的疲劳试验程序,并进行调试,可靠、稳定后方可进行正式试验。选择一个试件,检查荷载波形是否满足试验精度要求,位移(应变)信号接收是否正常。由于疲劳试验中试件的破坏存在偶然性,为了保护试验设备,疲劳程序中应设定相关的终止试验的保护程序。
 - 4.3 首先进行梁式试件的弯拉强度测定,以便确定疲劳试验的荷载水平。
- **4.4** 根据疲劳试验要求,取 $4 \sim 6(K = \sigma/S)$ 个应力比(对于无机结合料,推荐应力强度比范围在 $0.5 \sim 0.85$ 内)。
- **4.5** 将试件安放在疲劳试验的模具上。注意疲劳试验的荷载方向应与试件成型时的压力方向平行一致。
- **4.6** 预压: 在施加正式试验荷载前,应取 0.2 倍应力强度比水平的荷载进行预压 2min,以减少接触不良造成的试验偏差。
 - 4.7 施加荷载为连续的 Havesine 波,荷载标准频率为 10Hz。
- **4.8** 在疲劳试验过程中,有些试件的试验时间较长,试件产生风干。为此,需要用湿毛巾或塑料布覆盖,保持其湿润。
 - 4.9 试验过程中,应时刻监测荷载波形和试件的响应变形波形。
- **4.10** 试验过程中数据的采集内容有:荷载重复作用次数(即疲劳寿命),按对数级数规律采集一定荷载作用次数下的试件变形响应参数,及相应的滞回曲线。滞回曲线应连续采集10个周期的数据,然后进行平均,作为该时刻试件的代表滞回曲线。

5 计算

将所有有效的疲劳试验数据按式(T 0856-1)、式(T 0856-2)回归计算疲劳方程。

$$lgN = a + b\sigma/S$$
 (T 0856-1)
$$lgN = a + blg\sigma$$
 (T 0856-2)

式中:N——荷载作用次数(次);

σ ——作用荷载(N);

- σ/S ——应力强度比;
 - S ——梁式试件的弯拉强度(MPa);
- a、b ——回归系数。

6 结果整理

疲劳试验的疲劳方程的相关系数不宜小于50%。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成:
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度或压实度;
- (6)试验设备;
- (7)荷载频率、荷载级位;
- (8)疲劳方程及相关系数。

8 记录

本试验的记录格式见表 T 0856-1。

表 T 0856-1 无机结合料稳定材料疲劳试验记录表

工程名称 荷载频率 试 验 者 校 核 者		试件尺寸 材料名称 试样编号 试验日期					
应力水平(MPa)	应力强度比	疲劳寿命(次)	平均寿命(次)				

条文说明

无机结合料稳定材料疲劳试验的数据处理方法:

本规程中无机结合料稳定材料的弯曲疲劳试验结果采用单对数方程进行回归,应力强度比与疲劳寿命的对数值之间存在一元线性相关关系,疲劳方程的形式如式(T0856-1)。

无机结合料稳定材料的弯曲疲劳试验数据采用附录 B 中介绍的一元线性回归分析的方法进行处理,由此可以得到 50% 保证率下的疲劳方程。统计分析中样本总体的构成有两种方法:一种是将所有试件的弯曲疲劳试验数据作为总体;另一种是将同一个应力强度比下所测试件的疲劳寿命取平均值后

作为总体。下面通过具体的例子进行详细介绍。

【算例】

表 T 0856-2、表 T 0856-3 为某种无机结合料稳定材料的弯曲疲劳试验结果。要求计算其疲劳方程 并进行显著性分析,同时计算保证率为 99%、95%、90% 下的疲劳方程。

表 T 0856-2 某无机结合料稳定材料弯曲疲劳试验原始数据

<u></u> 应力强	_												
度比	荷载作用次数 N(次)												
σ/S													
0.74	3 710	21 600	70 070	73 790	155 070	249 370	552 700	647 770	2 032 000	2 161 999	1 968 248	2 772 000	5 518 409
0.79	1 000	1 370	1 570	2 310	23 690	150 290	346 114	338 160	450 910	522 000	878 225	2 736 388	6 000 000
0.83	80	200	900	9 890	12 750	16 000	30 660	32 570	37 000	767 694			
0.87	30	200	400	1 430	3 000	8 490	14 382	621 052					
0.92	40	80	110	4 920	6 770	9 870	21 710						

表 T 0856-3 某无机结合料稳定材料弯曲疲劳试验数据

应力强度比 σ/S							lg/V						
0.74	3.57	4.33	4. 85	4.87	5. 19	5.40	5.74	5.81	6.31	6.33	6.29	6. 44	6.74
0.79	3.00	3.14	3.20	3.36	4.37	5.18	5.54	5.53	5.65	5.72	5.94	6. 44	6.78
0. 83	1.90	2.30	2.95	4.00	4.11	4. 20	4.49	4.51	4.57	5.89			
0.87	1.48	2.30	2.60	3.16	3.48	3.93	4. 16	5.79					
0.92	1.60	1.90	2.04	3.69	3.83	3.99	4.34						

【方法一】

将所有试件的弯曲疲劳试验数据作为一个总体进行一元线性回归分析,见表 T 0856-4。将应力强度比(σ /S)作为自变量x,荷载作用次数(疲劳寿命)的对数值(lgN)作为因变量y,此时总体的样本量为 51,由表 T 0856-4 所列(x_i , y_i)数据进行回归分析。

表 T 0856-4 总体数据表(样本量 n = 51)

x _i	y_{i}	x _i	$y_{\rm i}$	x _i	y_{i}	x_i	$y_{\rm i}$	x _i	y_{i}
0.74	3.569 4	0.79	3.000 0	0.83	1.903 1	0.87	1.477 1	0.92	1.602 1
0.74	4. 334 5	0.79	3.136 7	0.83	2.301 0	0.87	2. 301 0	0.92	1.903 1
0.74	4. 845 5	0.79	3. 195 9	0.83	2.954 2	0.87	2. 602 1	0.92	2.041 4
0.74	4. 868 0	0.79	3.363 6	0.83	3.995 2	0.87	3. 155 3	0.92	3.692 0
0.74	5. 190 5	0.79	4.374 6	0.83	4. 105 5	0.87	3.477 1	0.92	3.830 6
0.74	5. 396 8	0.79	5. 176 9	0.83	4. 204 1	0.87	3. 928 9	0.92	3.994 3
0.74	5.742 5	0.79	5. 539 2	0.83	4. 486 6	0.87	4. 157 8	0.92	4. 336 7
0.74	5. 811 4	0.79	5.529 1	0.83	4.512 8	0.87	5.793 1		
0.74	6. 307 9	0.79	5.654 1	0.83	4.568 2				
0.74	6. 334 9	0.79	5.717 7	0.83	5. 885 2				
0.74	6. 294 1	0.79	5.943 6						
0.74	6. 442 8	0.79	6.437 2						
0.74	6. 741 8	0.79	6.778 2						

(1)回归疲劳方程

根据附录 B 计算一元线性回归分析中用到的相关统计参数(\bar{x} 、 \bar{y} 、 l_{xx} 、 l_{xy} 、 l_{yy})和回归系数(a、b),列于表 T 0856-5 中。

表 T 0856-5 统计参数和回归系数计算表

\bar{x}	ÿ	l _{xx}	l _{xy}	l _{yy}	b	a
0.83	4.37	0. 187 5	-2.786 6	108.563 1	- 14. 86	16.71

由表中数据可以得到50%保证率下的疲劳方程为:

$$\lg N = 16.71 - 14.86\sigma/S$$
 (T 0856-3)

(2)线性回归效果检验

根据附录 B 检验线性回归的效果,各统计参数见表 T 0856-6。

表 T 0856-6 线性回归效果检验

là à	亚宁五	自由度	1=\4\6 \	统计量F	置信限 $F_{\alpha}(1,49)$				
1個 两	偏离 平方和	日田及	标准偏差	近川里 F	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$		
回归	41.414 8	1		30. 221 5	7 206 5				
剩余	67. 148 3	49	1.170 6	30. 221 3	7. 206 5				
总和	108.563 1	50			高度显著				

由表中可以看出此线性回归效果高度显著。

(3)计算不同保证率下的疲劳方程

根据附录B计算不同保证率下的疲劳方程。

对于n-2=49,查t分布表可得:

保证率为99%时, $\lambda = 2.680$, $\Delta = 3.1372$;

保证率为 95% 时, λ = 2.009, Δ = 2.3517;

保证率为 90% 时, $\lambda = 1.677$, $\Delta = 1.9631$ 。

对于疲劳试验而言,置信区间取下限时为不利情况,因此不同保证率下的疲劳方程为:

①99%保证率下的疲劳方程

$$\lg N = 16.71 - 14.86\sigma/S - 3.1372 = 13.5728 - 14.86\sigma/S$$
 (T 0856-4)

②95%保证率下的疲劳方程

$$\lg N = 16.71 - 14.86\sigma/S - 2.3517 = 14.3583 - 14.86\sigma/S$$
 (T 0856-5)

③90%保证率下的疲劳方程

$$\lg N = 16.71 - 14.86\sigma/S - 1.9631 = 14.7469 - 14.86\sigma/S$$
 (T 0856-6)

【方法二】

将同一个应力强度比下所测试件的疲劳寿命取平均值后作为一个总体进行一元线性回归分析,见表 T 0856-7。将应力强度比(σ/S)作为自变量x,荷载作用次数(疲劳寿命)的对数值($\lg N$)作为因变量y,此时总体的样本量为 5,由表 T 0856-7 所列(x_i , y_i)数据进行回归分析。

表 T 0856-7 总体数	据表(样本量 n = 5)
----------------	---------------

x_i	y_i	$\boldsymbol{x}_{\mathrm{i}}$	y_{i}
0.74	5.53	0.87	3.36
0.79	4.91	0.92	3.06
0.83	3.89		

(1)回归疲劳方程

根据附录 B 计算一元线性回归分析中用到的相关统计参数 $(\bar{x},\bar{y},l_{xx},l_{yy},l_{yy})$ 和回归系数(a,b),列于表 T 0856-8 中。

表 T 0856-8 统计参数和回归系数计算表

\bar{x}	\bar{y}	l _{xx}	l_{xy}	l,y	b	a
0.83	4. 15	0.019 4	4. 364 6	-0.284 5	- 14. 66	16. 32

由表 T 0856-8 中数据可以得到 50%保证率下的疲劳方程为:

$$\lg N = 16.32 - 14.66\sigma/S$$
 (T 0856-7)

(2)线性回归效果检验

根据附录 B 检验线性回归的效果,各统计参数见表 T 0856-9。

表 T 0856-9 线性回归效果检验

偏离	平方和	自由度	. 标准偏差	:准偏差 统计量 F	置信限 $F_{\alpha}(1,3)$			
加 內	T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	中 日田及 标准偏左 犹り里『		$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$		
回归	4. 171 5	1		64 812 0	24 12			
剩余	0. 193 1	3	0. 253 7	64.813 9	34.12			
总和	4. 364 6	4			高度显著			

由表中可以看出此线性回归效果高度显著。

(3)计算不同保证率下的疲劳方程

根据附录B计算不同保证率下的疲劳方程。

对于n-2=3,查t分布表可得:

保证率为 99% 时, λ = 5.841, Δ = 1.4818;

保证率为 95% 时, λ = 3. 182, Δ = 0. 807 3;

保证率为 90% 时, λ = 2.353, Δ = 0.596 9。

对于疲劳试验而言,置信区间取下限时为不利情况,因此不同保证率下的疲劳方程为:

①99%保证率下的疲劳方程

$$\lg N = 16.32 - 14.66\sigma/S - 1.4818 = 14.8382 - 14.66\sigma/S$$
 (T 0856-8)

②95%保证率下的疲劳方程

$$lgN = 16.32 - 14.66\sigma/S - 0.8073 = 15.5127 - 14.66\sigma/S$$
 (T 0856-9)

③90%保证率下的疲劳方程

$$\lg N = 16.32 - 14.66\sigma/S - 0.5969 = 15.7231 - 14.66\sigma/S$$
 (T 0856-10)

【两种方法的比较】

- (1)从样本量来看,方法一的样本量明显多于方法二,采用方法一回归应较为准确。
- (2) 在相同保证率下,采用方法一得到的回归方程在 y 轴上的截距较小,试验结果偏于安全。 综上,采用方法一得到的回归方程较好,推荐采用方法一。

T 0857—2009 无机结合料稳定材料室内动态抗压回弹模量试验方法

1 适用范围

本方法适用于测定无机结合料稳定材料的动态抗压回弹模量。动态抗压回弹模量可以作为路面设计和评价的参数。

2 仪器设备

- **2.1** 试验机:即应力控制系统,要求应能施加一定频率范围、荷载持续时间及不同大小的应力,可用能产生需要波形的电动液压试验机,要求精度达到 5N。
 - 2.2 数据采集系统:包括荷载传感器、位移传感器、荷载计数器以及数据采集仪。
 - **2.3** 标准养护室。
 - 2.4 电子天平:量程 15kg,感量 0.1g;量程 4 000g,感量 0.01g。
 - 2.5 台秤:量程50kg,感量5g。
 - 2.6 圆形钢板。

3 试件制备和养护

- **3.1** 试验采用 1:1的圆柱形试件。细粒土和中粒土混合料成型 ϕ 100mm × 100mm 试件,粗粒土混合料成型 ϕ 150mm × 150mm 试件。
- 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
- 3.3 无机结合料稳定细粒土,应制备不少于6个试件,并要求模量试验结果的变异系数不超过10%;无机结合料稳定中粒土,应制备不少于9个试件,并要求模量试验结果的变异系数不超过10%;无机结合料稳定粗粒土,应制备不少于15个试件,并要求模量试验结果的变异系数不超过15%。

- 3.4 按照本规程 T 0843—2009 方法制备试件。
- 3.5 按照本规程 T 0845—2009 的标准养生条件进行养生,水泥稳定类土养生龄期为90d,石灰或粉煤灰类稳定材料的养生龄期 180d。
- 3.6 圆柱形试件的两个端面应用水泥净浆彻底抹平。将试件直立桌上,在上端面用早强高强水泥净浆薄涂一层后,在表面撒少许 0.25~0.5mm 的细砂,用直径大于试件的平面圆形钢板放在顶面,加压旋转圆钢板,使顶面齐平。边旋转边平移并迅速取下钢板。如有净浆被钢板粘去,则重新用净浆抹平,并重复上述步骤。一个端面整平后,放置 4h 以上,然后将另一端面同样整平。整平应该达到:加载板放在试件顶面后,在任一方向都不会翘动。试件整平后放置 8h 以上。
- 3.7 将端面已经处理平整的试件饱水 24h。应将试件浸泡在水中,水面高于试件顶面约 2.5cm。

4 试验步骤

- **4.1** 检查试验的机械设备是否正常,应着重检查试验系统的电力供应是否正常。计算机等控制系统的电源应备有延时电源,以防突然断电造成试验数据的丢失和设备的损坏。 选择合适的荷载传感器和位移(应变)传感器的量程,以确保测量结果精度的可靠性。
- **4.2** 根据试验目的,编制有关的试验程序,并进行调试,可靠、稳定后方可进行正式试验。选择1个试件,检查荷载波形是否满足试验精度要求,位移(应变)信号接收是否正常。
- **4.3** 按 T 0805—1994 方法测定混合料的抗压强度,荷载速率为 1 mm/min,作为动态模量试验的破坏强度 P。
- **4.4** 将试件放入加载设备中心,圆形钢板置于试件底部和顶端安放稳定。在上压板直径线两端安装位移传感器。
- **4.5** 设定波形函数发生器,输入 Haversine 荷载波形,频率为 10 Hz,无间歇时间,荷载级位一般设定为 $5 \sim 6$ 级(一般为 0.1P、0.2P、0.3P、0.4P、0.5P、0.6P),每级荷载作用次数为 200 次。
 - 4.6 将各传感器与数据采集仪相连接,校正并调零。
 - **4.7** 对试件施加 0.3*P* 荷载,预压 30s。

4.8 荷载由低到高逐级加载,每级荷载的最后 1s,采集连续 10 个荷载波形的最大荷载和最小荷载,以及相应的最大变形和最小变形。

动态荷载 F_1 的波形为 Haversine 波(半正矢波),在一个加载周期内其函数式为:

$$F_{1} = \frac{[1 - \cos(\omega t)]F_{0}}{2} + F_{c}$$
 (T 0857-1)

式中: F_0 ——荷载振幅(N);

F。——预压荷载(N);

 ω ——圆频率(rad/s);

t ——时间(s)。

5 计算

5.1 量测最后 10 次加载循环的平均荷载和变形振幅。

$$F_0 = F_{\text{max}} - F_{\text{min}}$$
 (T 0857-2)

$$l_0 = l_{\text{max}} - l_{\text{min}}$$
 (T 0857-3)

式中: F_0 ——荷载振幅(N);

l₀ ——变形振幅(mm);

 F_{max} ——最大荷载(N);

 F_{\min} ——最小荷载(N);

l_{max} ——最大变形(mm);

l_{min} ——最小变形(mm)。

实测荷载振幅与设定荷载振幅的误差应不超过 ±5%。

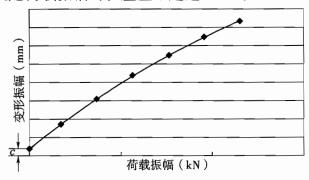


图 T 0857-1 荷载振幅与变形振幅的回归曲线

5.2 采用二次曲线模型对荷载振幅与相应的变形振幅进行曲线拟合,如图 T 0857-1 所示。相关系数应在 0.95 以上,否则需要重新试验。

二次曲线形式:
$$l_0 = aF'_0 + bF_0 + c$$
 (T 0857-4)

5.3 对曲线原点进行修正。从理论上讲,当荷载振幅为零时,变形振幅也应为零。因此,将测定的变形振幅减去回归曲线的常数 c,作为修正后的变形振幅。

5.4 按式(T0857-5)计算不同荷载级位下的动态抗压回弹模量值。

$$E_{\rm dc} = \frac{\sigma}{\varepsilon} = \frac{F_0 \times h}{(l_0 - c) \times A}$$
 (T 0857-5)

式中: E_{dc} ——动态抗压回弹模量值(MPa);

 F_0 — 荷载振幅(N);

l₀ ——变形振幅(mm);

c ——变形振幅修正值;

h ——试件高度(mm);

A ——试件截面积(mm²)。

6 结果整理

- 6.1 动态抗压回弹模量用整数表示。
- **6.2** 同一组试件试验中,采用 3 倍均方差方法剔除异常值,大试件可以有 2~3 个异常值。异常值数量超过上述规定的试验重做。
- **6.3** 对于无机结合料稳定细粒土,模量试验结果的变异系数不超过10%;中粒土模量试验结果的变异系数不超过10%;粗粒土模量试验结果的变异系数不超过15%。如不能保证变异系数小于上述规定,则还应按允许误差10%和90%概率重新计算增加试件数量,并另做新试验。新试验结果与老试验结果一并重新进行统计评定,直到变异系数满足上述规定。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm3)
- (4) 无机结合料类型及剂量;
- (5)试件干密度或压实度;
- (6)吸水量以及测动态抗压回弹模量时的含水量(%);
- (7) 动态抗压回弹模量(MPa),用整数表示;
- (8) n 个试验结果的最小值和最大值、平均值 E_{de} 、标准差 S 和变异系数 C_{u} (%)。

8 记录

本试验的记录格式见表 T 0857-1。

表 T 0857-1 无机结合料稳定材料动态抗压回弹模量试验记录表 试件尺寸______ 工程名称___ 路段范围___ 试验方法______ 试 验 者______ 材料名称___ 校 核 者 试样编号__ 最大粒径_ 试验日期____ 室内动态抗压回弹模量试验记录(一) 最小荷载 最大荷载 最小变形 最大变形 荷载振幅 变形振幅 设定荷载振幅 周期 (kN) (kN)(mm) (kN) (mm) (mm) (kN) (1) (2) (3) (4) (5) = (2) - (1)(6) = (4) - (3)1 2 3 4 5 6 7 8 9 10 平均值 室内动态抗压回弹模量试验记录(二) 平均最 平均最 平均最 平均最 平均荷 平均变 动态抗压 小荷载 大荷载 小变形 大变形 载振幅 形振幅 回弹模量 E_{dc} 设定荷载振幅 (kN) (mm) (mm) (mm) (kN)(kN) (kN) (MPa) (1) (4) (5) = (2) - (1) | (6) = (4) - (3)(2) (3) $l_0 = aF_0^2 + bF_0 + c$ 相关系数

T 0858—2009 无机结合料稳定材料冻融试验方法

1 适用范围

本方法适用于无机结合料稳定材料的抗冻性评价。半刚性基层材料的抗冻性以规定 龄期(28d 或 180d)的半刚性基层材料在经过数个冻融循环后的饱水无侧限抗压强度与 冻前饱水无侧限抗压强度之比来评价。

2 仪器设备

- 2.1 游标卡尺。
- 2.2 低温箱:控温-18℃,控温精度±1℃。
- 2.3 控温水槽:控温 20°C,控温精度 ±1°C。
- 2.4 天平:感量 0.01g。
- 2.5 压力机或万能试验机(也可用路面强度试验仪和测力计):压力机应符合现行《液压式压力试验机》(GB/T 3722)及《试验机通用技术要求》(GB/T 2611)中的要求,其测量精度为±1%,同时应具有加载速率指示装置或加载速率控制装置。上下压板平整并有足够刚度,可以均匀地连续加载卸载,可以保持固定荷载。开机停机均灵活自如,能够满足试件吨位要求,且压力机加载速率可以有效控制在1mm/min。

3 试件制备和养护

- **3.1** 试件采用 1:1的圆柱形试件。无机结合料稳定细粒土、中粒土、粗粒土均采用 ϕ 150mm×150mm 的圆柱形试件。
- 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
- **3.3** 按照本规程 T 0843—2009 方法制备 18 个 ϕ 150mm × 150mm 的标准试件,其中 9 个为冻融试件,9 个为不冻融对比试验。
- 3.4 按照本规程 T 0845—2009 的标准养生条件进行养生。冻融 5 次循环的试件,标准养生 28d;冻融 10 次循环的试件,标准养生 180d。
 - 3.5 养生期的最后 1d,应该将试件浸泡在水中,水面高于试件顶面约 2.5cm。在浸泡

于水中之前,应再次称试件的质量 m_3 。

4 操作流程

- **4.1** 浸水完毕后,取出试件,用湿布擦除表面的水分,称质量;用游标卡尺测量试件的高度,精确至0.1mm。
- **4.2** 取其中一组试件按本规程 T 0805—1994 方法测定非冻融条件下的无侧限抗压强度 $R_{\rm e}$ 。
- **4.3** 取其中冻融的一组试件,按编号置入低温箱开始冻融试验。低温箱的温度为 18℃,冻结时间为 16h,保证试件周围至少留有 20mm 空隙,以利于冷空气流通。冻结试验结束后,取出试件,量高、称质量;然后立即放入 20℃的水槽中进行融化,融化时间为 8h。槽中水面应至少高出试件表面 20mm,融化完毕,取出试件擦干后量高、称质量,该次冻融循环即结束。然后放入低温箱进行第二次冻融循环。
 - 4.4 如试件的平均损失率超过5%,即可停止其冻融循环试验。
- **4.5** 试件达到规定的冻融循环次数后,按照本规程 T 0805—1994 方法进行冻融后的抗压强度(R_{DC})试验。抗压试验前应称试件质量并进行外观检查。详细记录试件表面破损、裂缝及边角缺损情况。

5 计算

半刚性材料的抗冻性指标按式(T0858-1)、式(T0858-2)计算。

BDR =
$$\frac{R_{\rm DC}}{R_{\rm c}} \times 100$$
 (T 0858-1)

式中:BDR——经n次冻融循环后试件的抗压强度损失(%);

 $R_{\rm pc}$ ——n 次冻融循环后试件的抗压强度(MPa);

 R_c ——对比试件的抗压强度(MPa)。

$$W_{\rm n} = \frac{m_0 - m_{\rm n}}{m_0} \times 100 \tag{T 0858-2}$$

式中: W_n —n 次冻融循环后的试件质量变化率(%);

 m_0 ——冻融循环前试件的质量(g);

 m_n —n 次冻融循环后试件的质量(g)。

6 报告

试验报告应包括以下内容:

— 147 **—**

- (1)材料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的等级;
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度(保留3位小数,g/cm3)或压实度;
- (6) 吸水量以及测抗压强度时的含水量(%);
- (7) 非冻融条件下的抗压强度和冻融条件下的抗压强度,保留1位小数;
- (8) 若干个试验结果的最小值和最大值、平均值 R_{DC} 、标准差S、变异系数C、和95%概率的值 $R_{DC0.95}(R_{DC0.95}=R_{DC}-1.645S)$ 。

7 记录

本试验的记录格式见表 T 0858-1。

表 T 0858-1 无机结合料稳定材料的冻融试验记录表

工程名称		身 力	序生龄期 口载速率 F融试验	(d) (mm/mi 周期(d)	n)				
最大干密度(g/cm³) 试件压实度(%) 试 验 者		非冻融强度代表值(MPa) 试验日期 校 核 者						_	
试件编号	1	2	3	4	5	6	7	8	ç
冻融前质量(g)									
第一次冻融后质量(g)									
第二次冻融后质量(g)									
第三次冻融后质量(g)									
第四次冻融后质量(g)									
第五次冻融后质量(g)									
 无侧限抗压强度值(MPa)									

冻融后无侧限抗压强度代表值: $R_{DC} = ____(MPa)$

条文说明

本方法与《公路沥青路面设计规范》(JTG D50—2006)中的附录 A.2 半刚性基层材料抗冻性试验方法等效。

考虑到无机结合料稳定材料在道路基层中可能不会处在饱水状态,编写组采用养生结束后直接进入冻融循环和养生结束后饱水进入冻融循环的试验方法对水泥稳定材料和二灰稳定材料进行了冻融循环试验。试验结果见表 T 0858-2。结果表明,湿冻对水泥稳定材料的影响较大,对二灰集料的影响相对较小。

泪入刺来到	未冻	湿	冻	干冻		
混合料类型	强度(MPa)	强度(MPa)	BDR(%)	强度(MPa)	BDR(%)	
水泥稳定材料	6.9	5.6	82.37	5.97	87.05	
二灰稳定材料	5.7	4.8	84. 59	4.39	76.93	

表 T 0858-2 无机结合料稳定材料的冻融试验结果

T 0859—2009 无机结合料稳定材料渗水试验方法

1 适用范围

本方法适用于无机结合料稳定材料的抗渗性试验。半刚性基层材料的抗渗性测试分为两种:对孔隙较大的断级配粒料基层或排水基层,本试验用于测定其渗水系数;对孔隙较小的密实型无机结合料基层,本试验用于测定其在一定压力下的渗水性能。

2 仪器设备

- **2.1** 渗水仪:渗水仪的底座直径 100mm(可在路面材料渗水仪基础上进行改造,底座的直径改为 100mm)。
 - 2.2 水桶及大漏斗。
 - 2.3 密封材料:如石蜡(内掺松香约2%)。
 - 2.4 接水容器。
 - 2.5 渗透仪:应能使水压按规定的方法稳定地作用在试件上。
 - 2.6 螺旋加压器、烘箱、电炉。
 - 2.7 其他:水、红墨水、粉笔、扫帚等。

3 试件制备和养护

- **3.1** 试件采用 1:1的圆柱形试件。无机结合料稳定细粒土、中粒土、粗粒土均采用 ϕ 150mm×150mm的圆柱形试件。
 - 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。

- **3.3** 按照本规程 T 0843—2009 方法成型 ϕ 150mm × 150mm 的标准试件,—组试验平行成型 6 个试件。
- 3.4 按照本规程 T 0845—2009 标准养生方法养生。标准养生龄期为 28d,也可以根据试验需要确定,但不能少于 7d。
 - 3.5 用于测定渗水性能的试件,在养生结束的最后 1d 不要浸水。
- 4 试验步骤
 - 4.1 透水性基层
 - 4.1.1 在洁净的水桶内滴入几滴红墨水,使水变成淡红色。
- **4.1.2** 试件到龄期后取出,擦干表面,用钢丝刷刷净两端面;待表面干燥后,在试件侧面滚涂一层熔化的密封材料;然后立即在螺旋加压器上压入经过烘箱或电炉预热过的试模中,使试件底面和试模底平齐。
- **4.1.3** 在试件表面沿渗水仪底座圆圈位置抹一薄层密封材料,边涂边用手压紧,一直抹到试模壁。使密封材料嵌满试件表面混合料的缝隙,且牢固地黏结在试件上。密封料圈的内径与底座内径相同,约100mm。
 - 4.1.4 将渗水仪底座用力压在试件密封材料圈上,再加上铁圈压重压住仪器底座。
- **4.1.5** 用适当的垫块放在试件下,将试件垫起,试件下方放置一个接水容器。关闭渗水仪细管下方的开关,向仪器的上方筒中注入淡红色的水至满刻度,总量为600mL。
- 4.1.6 迅速将开关全部打开,水开始从细管下部流出;待水面下降至 100mL 时,立即开动秒表,每间隔 60s,读记仪器管的刻度一次;至水面下降 500mL 时为止,并记录所需时间。测试过程中,应观察渗水的情况,正常情况下,水应该通过混合料内部空隙从试件的反面及四周渗出。如水是从底座与密封材料间渗出,说明底座与试件密封不好,应另采用干燥试件重新操作。如水面下降速度很慢,从水面下降至 100mL 开始,测得 3min 的渗水量即可停止。
- **4.1.7** 按以上步骤对用同一种材料制作的 6 个试件测定渗水系数,取其平均值,作为检测结果。

4.2 密实型半刚性基层材料

- **4.2.1** 试件到龄期后取出,擦干表面,用钢丝刷刷净两端面;待表面干燥后,在试件侧面滚涂一层熔化的密封材料;然后立即在螺旋加压器上压入经过烘箱或电炉预热过的试模中,使试件底面和试模底平齐。待试模变冷后,即可解除压力,装在渗水仪上进行试验。
- **4.2.2** 渗水仪的上面加上施压装置,在试件的下方放上接水容器,水压控制恒定为 0.8MPa ± 0.05MPa。
- **4.2.3** 加上水压的同时开始记录时间(精确至 1min),并观察水从试件下流出的时间。若试件透水,记录 24h 内流出水的量;若试件不透水,24h 后停止试验,取出试件。

5 计算

透水性试验结果是以水面从 100mL 下降至 500mL 所需的时间为标准;若渗水时间过长,亦可采用 3min 通过的水量计算。

$$C_{\rm w} = \frac{V_2 - V_1}{t_2 - t_1} \tag{T 0859-1}$$

式中: C_w ——渗水系数(mL/min);

 V_1 ——第一次读数时的水量(mL),通常为 100mL;

 V_2 ——第二次读数时的水量(mL),通常为 500mL;

 t_1 ——第一次读数的时间(s);

 t_2 ——第二次读数的时间(s)。

6 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度(g/cm³);
- (4) 无机结合料类型及剂量;
- (5)试件干密度或压实度、混合料级配类型;
- (6)试验设备:
- (7)材料的渗水系数。

条文说明

本规程中透水性基层的渗水试验方法来自于《公路工程沥青及沥青混合料试验规程》(JTJ 052-

2000)的 T 0730—2000"沥青混合料渗水试验",并根据半刚性基层材料的成型条件,对渗水仪的底径进行了调整。密实型半刚性基层材料的渗水试验方法参照《公路工程水泥和水泥混凝土试验规程》(JTG E30—2005)中 T 0569—2005"水泥混凝土渗水高度试验方法",并根据半刚性基层材料的成型条件,对试件尺寸进行了调整。

T 0860—2009 无机结合料稳定材料抗冲刷试验方法

1 适用范围

本方法适用于水泥稳定类、石灰稳定类、二灰稳定类等基层材料进行抗冲刷试验。

2 仪器设备

- 2.1 MTS 试验机或其他能够施加振动荷载的试验设备(如冲刷试验机)。
- 2.2 冲刷桶:装水桶,可固定在加载设备上且使固定试件不受磨损(图 T 0860-1)。

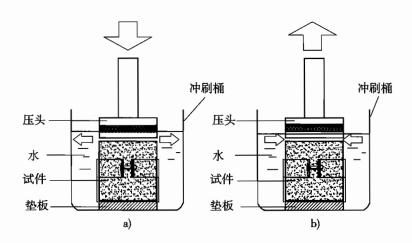


图 T 0860-1 试验中压头上下运动时水流的运动方向

- **2.3** 橡皮垫:具有纵横和竖向连通孔隙,减少刚性压头对试件的冲击,同时模拟轮胎的 泵吸作用。采用邵氏硬度 80 ± 2 的橡胶垫,尺寸根据冲刷试件的大小,采用 ϕ 150mm × 20mm 和 ϕ 100mm × 20mm,平面孔距为 10mm,厚度方向的孔距为 5mm,孔的直径为 ϕ 3mm。
 - 2.4 电子天平:量程 4 000g,感量 0.01g;量程 15kg,感量 0.1g。
 - 2.5 试模。
 - 2.6 脱模器。

2.7 量筒、拌和工具等。

3 试件准备

- 3.1 试件为圆柱形, 径高比为 1:1。在冲刷试验中, 无机结合料稳定细粒土、中粒土、粗粒土均采用 φ150mm×150mm 的圆柱形试件。按照室内击实试验所确定的最大干密度和最佳含水量及要求的压实度, 采用静力压实或振动成型法制备试件。
 - 3.2 按照本规程 T 0804—1994 确定无机结合料稳定材料的最佳含水量和最大干密度。
 - 3.3 按照本规程 T 0843—2009 方法成型试件。
- **3.4** 无机结合料稳定细粒土每种配比应平行成型 3 个试件,稳定中、粗粒土则应平行成型 6 个试件。
 - 3.5 按照本规程 T 0845—2009 标准养生方法养生。
- 3.6 为避免冲刷试验中试件垮塌,试件需要达到一定的强度,具体的养生龄期见表T 0860-1。

 材料种类
 养生龄期(d)

 水泥稳定类
 28

 二灰稳定类
 90

表 T 0860-1 冲刷试验试件养生龄期

3.7 试件养生结束后,将试件浸水 24h 备用。

4 试验步骤

- **4.1** 将饱水后的试件从水中取出,拭干表面的水分,称其质量 m_0 。
- **4.2** 把准备好的试件放入冲刷桶内。用夹具将试件固定于冲刷桶的底面(为保护试件免受夹具的损伤,在试件与钢夹之间沿着径向垫上一层胶皮垫),然后将装有试件的冲刷桶牢固地安置在试验机上。
- **4.3** 向冲刷桶中注入清水,水面应高于试件顶面 5mm。在试件上垫上有纵横竖向孔的橡皮垫。
 - 4.4 调整好试验机的施力状态,冲击力峰值为 0.5 MPa,冲刷频率为 10 Hz。

- 4.5 冲刷时间为30min。
- **4.6** 冲刷完成后,将冲刷桶从试验机底板上卸下,把桶中混浊的水连同冲刷物小心地倒入金属盆中进行沉淀。
- **4.7** 冲刷物沉淀 12h 后,将盆中上部的清水小心地倒出,剩下的沉淀物放入烘箱中烘干,然后称其质量,得到 30min 的累计冲刷量 m_f 。

5 计算

按式(T0860-1)计算试件的冲刷质量损失。

$$P = \frac{m_{\rm f}}{m_{\rm o}} \times 100 \tag{T 0860-1}$$

式中: P ----冲刷质量损失(%);

 m_i ——冲刷物质量;

m₀ ——试件质量。

6 结果整理

- **6.1** 同一组试验的变异系数 $C_v(\%)$ 符合下列规定,方为有效试验:细粒土、中粒土 $C_v \le 10\%$;粗粒土 $C_v \le 15\%$ 。
- **6.2** 当试验结果满足要求时,将几个平行试件的试验结果取平均值作为最终结果。

7 报告

试验报告应包括以下内容:

- (1)集料的颗粒组成;
- (2)水泥的种类和强度等级,或石灰的有效钙和氧化镁含量(%);
- (3)重型击实的最佳含水量(%)和最大干密度 (g/cm^3) ;
- (4) 无机结合料类型及剂量:
- (5)试件干密度或压实度、混合料级配类型;
- (6)试验设备:
- (7)材料的冲刷质量损失。

条文说明

试件成型后的养生方法、养生龄期对半刚性基层材料抗冲刷性能影响很大。养生时间太短,试件强度不足就容易被冲散;养生时间太长,试件的强度太高,冲刷量很小,不同类型材料的试验结果的差

别太小。

在成型试件的过程中,混合料是否拌均匀对试验的结果影响也很大。此外,在按规定的干密度用静力压实的方法制备试件时,应注意使试模两头的压柱同时等速地压入试模,因为这样所得的试件内部压实度最稳定,冲刷试验后所得的结果也最稳定;如果两头的压柱以不同的速度被压入试模,制成的试件内部压实度变化将无一定的规则,冲刷试验时所得结果的离散性会因此加大。试验结果表明,试件的压实度对冲刷量有很大的影响。

在冲刷量的计算方面应注意以下几点:①经过冲刷试验后的试件除了受到冲刷作用的顶面有损失以外,试件的其他部位不应有明显的破坏,否则该次试验无效;②冲刷试验结束后的收集物中,稳定细粒土正常情况下应为细泥浆,如其中含有较大的块状物应将其取出;对于稳定中、粗粒土,若冲刷物中含有较大的石块,不将其计入冲刷物中;③在试验中应始终保持冲刷桶及试件的稳定性;若试验过程中冲刷桶或试件出现松动,则应立即停止试验,加固后方可继续试验。

附录 A 正态样本异常值的判断及处理方法 ——狄克逊准则

在一组重复测量数据中,若个别数据与其他数据有明显差异,则该组数据很可能含有粗大误差,称其为可疑数据。这时,需要对这些异常值做出正确的判断和处理,通常采用统计的方法进行判别。统计方法处理的基本思想是:给定一个显著性水平,按一定分布确定一个临界值,凡超过这个界限的误差,则认为是异常值,应予以剔除。

本附录介绍一种常用的正态样本异常值的判断和处理方法——狄克逊准则。该方法 仅限于对正态或近似正态的样本数据进行判别,适用于样本量为3~30、总体中含有1个 以上异常值的情况。

狄克逊准则,是狄克逊(Dixon)在 1950 年提出的一种不需要估算平均值 \bar{x} 和标准差 S 便能判断总体中是否含有异常值的方法。它根据测量数据按大小排列后的顺序差来判别粗大误差,用狄克逊准则判断样本数据中混有 1 个以上异常值的情形效果较好。以下介绍常用的狄克逊双侧检验准则。

设正态测量总体的一组样本为 x_1, x_2, \dots, x_n ,按大小顺序排列为:

$$x'_1 \leqslant x'_2 \leqslant \cdots \leqslant x'_n$$

构造检验高端异常值 x'_n 和低端异常值 x'_1 的统计量,分以下几种情形:

$$\begin{cases} r_{10} = \frac{x'_{n} - x'_{n-1}}{x'_{n} - x'_{1}}, r'_{10} = \frac{x'_{2} - x'_{1}}{x'_{n} - x'_{1}} & (样本量 n = 3 \sim 7) \end{cases}$$

$$\begin{cases} r_{11} = \frac{x'_{n} - x'_{n-1}}{x'_{n} - x'_{2}}, r'_{11} = \frac{x'_{2} - x'_{1}}{x'_{n-1} - x'_{1}} & (样本量 n = 8 \sim 10) \end{cases}$$

$$\begin{cases} r_{21} = \frac{x'_{n} - x'_{n-2}}{x'_{n} - x'_{2}}, r'_{21} = \frac{x'_{3} - x'_{1}}{x'_{n-1} - x'_{1}} & (样本量 n = 11 \sim 13) \end{cases}$$

$$\begin{cases} r_{22} = \frac{x'_{n} - x'_{n-2}}{x'_{n} - x'_{3}}, r'_{22} = \frac{x'_{3} - x'_{1}}{x'_{n-2} - x'_{1}} & (样本量 n = 14 \sim 30) \end{cases}$$

以上的 r_{10} 、 r'_{10} 、 \cdots 、 r_{22} 、 r'_{22} 简记为 r_{ij} 和 r'_{ij} 。 狄克逊认为对不同的测量次数,应选用不同的统计量 r_{ij} ,才能达到良好的效果。 狄克逊导出了它们的概率密度函数。 在选定显著性水平 α 下,求得临界值 $D(\alpha,n)$,见表 A-1。

表 A-1						
\overline{n}	统计量	$\alpha = 0.05$	$\alpha = 0.01$			
3		0.970	0. 994			
4		0.829	0.926			
5		0.710	0. 821			
6		0.628	0.740			
7		0.569	0.680			
8		0.608	0.717			
9		0.564	0. 672			
10		0.530	0.635			
11		0.619	0.709			
12	r ₂₁ 和 r' ₂₁ 中较大者	0. 583	0.660			
13		0.557	0. 638			
14		0.586	0.670			
15		0.565	0. 647			
16		0.546	0. 627			
17		0.529	0. 610			
18		0.514	0. 594			
19		0.501	0. 580			
20		0.489	0. 567			
21		0.478	0.555			
22		0.468	0. 544			
23		0.459	0. 535			
24		0.451	0.526			
25		0.443	0.517			
26		0.436	0.510			
27		0.429	0. 502			
28		0.423	0.495			
29		0.417	0.489			
30		0.412	0.483			

表 A-1 狄克逊双侧检验的临界值

若

$$r_{ij} > r'_{ij}, r_{ij} > D(\alpha, n)$$

则判断 x'。为异常值,予以剔除;

若

$$r_{\rm ij} < r'_{\rm ij} \,, r_{\rm ij} > D(\alpha, n)$$

则判断 x'_1 为异常值, 予以剔除;

否则,判断没有异常值。

重复上述步骤,便可以剔除1个以上的异常值。

— 157 **—**

附录 B 一元线性回归分析

1 一元线性回归方程

假设两个变量 x 与 y 之间线性相关,现由试验获得 x 和 y 的一组样本数据(x_i , y_i),记它们之间的线性关系如下:

$$y_i = a + bx_i + \varepsilon_i (i = 1, 2, \dots, n, n > 2)$$
 (B-1)

式中:a、b——待定的估计量;

 ε_i ——独立、等权的正态偶然误差 $N(0,\sigma^2)$;

 x_i ——普通自变量,如有随机性,则归入 ε_i 之中。

为求得 a 和 b,采用线性最小二乘法,即令

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - a - bx_{i})^{2} = Min$$
 (B-2)

其正则方程组为:

$$\begin{cases} \sum a + \sum x_i b = \sum y_i \\ \sum x_i a + \sum x_i^2 b = \sum x_i y_i \end{cases}$$

记

$$\begin{cases}
\overline{x} = \frac{1}{n} \sum x_{i}, \overline{y} = \frac{1}{n} \sum y_{i} \\
l_{xx} = \sum (x_{i} - \overline{x})^{2} = n \overline{x^{2}} - n \overline{x}^{2} \\
l_{xy} = \sum (x_{i} - \overline{x}) (y_{i} - \overline{y}) = n \overline{xy} - n \overline{x} \cdot \overline{y} \\
l_{yy} = \sum (y_{i} - \overline{y})^{2} = n \overline{y^{2}} - n \overline{y}^{2}
\end{cases}$$
(B-3)

正则方程组可改写为:

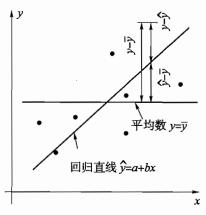
$$\begin{cases} 1 \cdot a + \overline{x} \cdot b = \overline{y} \\ \overline{x} \cdot a + \overline{x^2} \cdot b = \overline{xy} \end{cases}$$

求得

$$\begin{cases}
b = \frac{n(\overline{xy} - \overline{x} \cdot \overline{y})}{n(\overline{x^2} - \overline{x} \cdot \overline{y})} = \frac{l_{xy}}{l_{xx}} \\
a = \overline{y} - b\overline{x}
\end{cases}$$
(B-4)

由此获得方程

$$\hat{\mathbf{y}} = a + b\mathbf{x} \tag{B-5}$$


称为上述样本 (x_i,y_i) 的一元线性回归方程,b 称为回归系数。在笛卡儿坐标系中,上式表示的是一条通过重心 (\bar{x},\bar{y}) 的回归直线。b>0,表明 y 随 x 有线性增大的趋势;b<0,

表明 γ 随 x 有线性减小的趋势。

2 线性回归效果检验

对任意一组样本数据,形式上都可以按最小二乘法拟合出一条回归直线。显然,线性 拟合的效果会有显著与不显著之分。下面用方差分析的方法来对其进行检验。

测量值 y_1 、 y_2 "、…、 y_n 之间的差异,是由两个方面的原因引起的:一是自变量 x 取值的不同;二是测量误差等其他因素的影响。为了对(x_i , y_i)线性回归的效果进行检验,必须将上述两原因造成的结果分解出来。如图 B-1 所示,将变量 y 的 n 个测值 y_i 与其平均值 \bar{y} 的偏离(y_i - \bar{y})分解为由变量 x 的不同取值引起的回归偏离(\hat{y}_i - \bar{y})和由测量误差等其他因素造成的剩余偏离(y_i - \hat{y})。并进一步用 n 个取值的偏离平方和来描述它们,分别记为 Σ_{α} 、 $\Sigma_{\mathbb{R}}$ 、 $\Sigma_{\mathbb{R}}$ 。

$$\Sigma_{ii} = \sum (y_i - \overline{y})^2 = l_{vv}$$
 (B-6)

图 B-1 一元线性回归直线方差分析

 $\Sigma_{\rm E}$ 称为总偏离平方和。因为

$$\Sigma_{\ddot{\mathbb{S}}} = \sum (y_{i} - \bar{y})^{2} = \sum [(y_{i} - \hat{y}_{i}) + (\hat{y}_{i} - \bar{y})]^{2}$$
$$= \sum (y_{i} - \hat{y}_{i})^{2} + \sum (\hat{y}_{i} - \bar{y})^{2} + 2\sum (y_{i} - \hat{y}_{i})(\hat{y}_{i} - \bar{y})$$

可以证明,以上交叉项为零。

因此有

$$\Sigma_{\rm B} = \Sigma_{\rm M} + \Sigma_{\rm D}$$

这样就把总偏离平方和 $\Sigma_{\mathbb{Q}}$ 分解为回归平方和 $\Sigma_{\mathbb{Q}}$ 及剩余平方和 $\Sigma_{\mathbb{Q}}$ 两部分。回归平方和 $\Sigma_{\mathbb{Q}}$ 反映了在 y 总的偏离中因 x 和 y 的线性关系而引起 y 变化的大小;剩余平方和 $\Sigma_{\mathbb{Q}}$ 反映了在 y 总的偏离中除了 x 对 y 线性影响之外的其他因素而引起 y 变化的大小。这些其他因素包括测量误差 x 和 y 不能用直线关系描述的因素以及其他未加控制的因素等。由式(B-2)可知,回归分析的要求就是使剩余平方和最小。即 $\Sigma_{\mathbb{Q}}$ 愈小,回归效果愈好。

由式(B-4)与式(B-5),可将 Σ_{\square} 写成

$$\Sigma_{\Box} = \sum (\hat{y}_{i} - \overline{y})^{2} = \frac{l_{xy}^{2}}{l_{xx}} = bl_{xy}$$
 (B-7)

而

$$\Sigma_{\widehat{\mathbb{A}}} = \Sigma_{\widehat{\mathbb{A}}} - \Sigma_{\widehat{\mathbb{B}}} \tag{B-8}$$

由回归平方和及剩余平方和的意义可知,一个线性回归方程是否显著,取决于 Σ_{m} 及 Σ_{M} 的大小。若 Σ_{m} 愈大而 Σ_{M} 愈小,则说明 y 与 x 线性关系愈密切。回归方程显著的检验,通常采用 F 检验法。这里,需要构造统计量

$$F = \frac{\sum_{\square} / \nu_{\square}}{\sum_{\mathfrak{P}} / \nu_{\mathfrak{P}}} \tag{B-9}$$

式中: $\nu_{\text{\tiny II}}$ ——回归平方和的自由度;

νո——剩余平方和的自由度。

在假定剩余偏离 ε_i 服从独立、等权正态随机误差分布的前提下,F 是服从 $F(\nu_{\text{\tiny III}},\nu_{\text{\tiny III}})$ 分布的。

自由度是指独立观测值的个数。因 $\Sigma_{\mathbb{R}}$ 中 n 个观测值 y_i 受平均值 y_i 的约束,这就等于有 1 个测值不是独立的,即失去 1 个自由度,余下自由度 $\nu_{\mathbb{R}} = n-1$ 。 $\Sigma_{\mathbb{R}}$ 中只有 b 是独立变化的,即自由度 $\nu_{\mathbb{R}} = 1$ 。因此,自由度 $\nu_{\mathbb{R}} = \nu_{\mathbb{R}} - \nu_{\mathbb{R}} = n-2$ 。

将自由度代回式(B-9)有

$$F = \frac{\Sigma_{\text{\tiny [I]}}}{\Sigma_{\text{\tiny [A]}}/(n-2)} \tag{B-10}$$

在给定显著性水平 α 下,查 F 分布的临界值 $F_{\alpha}(1,n-2)$ 。将计算值 F 与 $F_{\alpha}(1,n-2)$ 比较,若

$$F > F_{\alpha}(1, n-2)$$

则认为该回归效果显著;反之,则不显著。

通常认为在 $\alpha = 0.01$ 水平上显著,即

$$F > F_{0.01}(1, n-2)$$

是回归高度显著;

 $\alpha = 0.05$ 水平上显著,即

$$F_{0.05}(1,n-2) \leq F \leq F_{0.01}(1,n-2)$$

是回归显著;

在 $\alpha = 0.10$ 水平上显著,即

$$F_{0.10}(1,n-2) \leq F \leq F_{0.05}(1,n-2)$$

是在0.1 水平上显著。

式(B-10)的分母

$$\frac{\Sigma_{\text{pl}}}{n-2} = \frac{1}{n-2} \sum (y_i - \hat{y}_i)^2$$

为剩余方差,于是得剩余标准差

$$S = \sqrt{\frac{\Sigma_{\neq j}}{n - 2}} \tag{B-11}$$

它的意义是表征除了 x 与 y 线性关系之外其他因素影响 y 值偏离的大小。

线性回归效果的检验,可归纳为如下方差分析表(表 B-1),根据该表按照如下步骤进行检验:

(1)依序计算统计量:

$$\Sigma_{\stackrel{\circ}{\bowtie}} = l_{yy}$$
— 160 —

$$egin{aligned} oldsymbol{\Sigma}_{oldsymbol{eta}} &= b l_{ ext{xy}} \ oldsymbol{\Sigma}_{oldsymbol{eta}} &= oldsymbol{\Sigma}_{oldsymbol{eta}} - oldsymbol{\Sigma}_{oldsymbol{eta}} \ S^2 &= rac{oldsymbol{\Sigma}_{oldsymbol{ar{\eta}}}}{n-2} \ F &= rac{oldsymbol{\Sigma}_{oldsymbol{\eta}}}{S^2} \end{aligned}$$

表 B-1 方差分析表

偏离	平方和	自由度	标准偏差	统计量 F	置信限 F _a (1,n-2)		
					$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
回归	$\Sigma_{f ar{m}}=bl_{xy}$	1		_			
剩余	$\Sigma_{ alpha} = \Sigma_{ar{arphi}} - \Sigma_{ar{arphi}}$	n - 2	$S = \sqrt{\frac{\Sigma_{\neq j}}{n-2}}$	$\frac{\Sigma_{\mathbb{B}}}{\mathrm{S}^2}$			
总和	$oldsymbol{\Sigma}_{oldsymbol{oldsymbol{eta}}}=l_{yy}$	n-1			显著否	显著否	显著否

(2)按一定显著水平 α 和自由度 n-2 查 F 分布表,得到 $F_{\alpha}(1,n-2)$ 的数值,比较统计量 F 与 $F_{\alpha}(1,n-2)$ 的大小,作出判断结论。

3 回归预测区间

在某个非试验点 $x = x_0$ 处,按回归方程 y = a + bx 求得回归值 \hat{y}_0 ,需要预报 \hat{y}_0 偏离实际值 y_0 有多大。这是要解决一个回归预测的精度问题。

这里,为讨论方便,仍假设测量值y及回归值 \hat{y} 均服从正态分布。可以构造一个服从t分布的统计量

$$\frac{y - \overline{y}}{\sqrt{1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{l_{xx}}} \cdot S} \sim t(n - 2)$$
(B-12)

在给定的置信水平 p 下,有如下的预测区间

$$p[\hat{y} - \Delta < y < \hat{y} + \Delta] = p \tag{B-13}$$

式中:

$$\Delta = \lambda S \sqrt{1 + \frac{1}{n} + \frac{\left(x - \overline{x}\right)^2}{l_{xx}}}$$
 (B-14)

 λ 可查 t 分布临界值获得。

式(B-13)与式(B-14)表明,用回归方程预测的偏差 Δ 除与 p、n 及 S 有关外,还与观测 x 有关。当 x 靠近x时, Δ 小;当 x 远离x时, Δ 就大。特别当 x 在x附近,n 又足够大时,可简化得 y 的预测区间

$$p[\hat{y} - \lambda S < y < \hat{y} + \lambda S] = p$$
 (B-15)

 λ 可查 t 分布临界值获得。

— 161 **—**

公路工程现行标准、规范、规程、指南一览表

序号	— 类	别	编号	书名(书号)	定价(元)
1			JTJ 002—87	公路工程名词术语(0346)	22.00
2			JTJ 003—86	公路自然区划标准(0348)	16.00
3			JTJ/T 0901—98	1: 1000000 数字交通图分类与图示规范(0242)	78.00
4			JTG B01—2003	公路工程技术标准(04957)	28.00
5			JTJ 004—89	公路工程抗震设计规范(0347)	15.00
6		İ	JTG/T B02-01—2008	公路桥梁抗震设计细则(1228)	35.00
7		İ	JTG B03—2006	公路建设项目环境影响评价规范(0927)	26.00
8		Ì	JTJ/T 006—98	公路环境保护设计规范(0195)	8.00
9	基	왜	JTG/T B05—2004	公路项目安全性评价指南(0784)	18.00
10			JTG B062007	公路工程基本建设项目概算预算编制办法(06903)	26.00
11			JTG/T B06-01—2007	公路工程概算定额(06901)	110.00
12			JTG/T B06-02—2007		138.00
13			JTG/T B06-03—2007	公路工程机械台班费用定额(06900)	24.00
14			交通部定额站 2009 版	公路工程施工定额(07864)	78.00
15			JTG/T B07-01-2006	公路工程混凝土结构防腐蚀技术规范(0973)	16.00
16			交通部 2007 年第 30 号	国家高速公路网相关标志更换工作实施技术指南(1124)	58.00
17			交通部 2007 年第 35 号	收费公路联网收费技术要求(1126)	62.00
18			JTG C10—2007	公路勘测规范(06570)	28.00
19			JTG/T C10-2007	公路勘测细则(06572)	42.00
20			JTJ 064—98	公路工程地质勘察规范(0220)	28.00
21	勘	测	JTG/T C21-01—2005	公路工程地质遥感勘察规范(0839)	17.00
22			JTG C30—2003	公路工程水文勘测设计规范(0604)	22.00
23			JTG/T C22—2009	公路工程物探规程(1311)	28.00
24			JTG D20—2006	公路路线设计规范(0996)	38.00
25			JTG D30—2004	公路路基设计规范(05326)	48.00
26		,	JTG/T D31—2008	沙漠地区公路设计与施工指南(1206)	32.00
27		公	JTG D40—2002	公路水泥混凝土路面设计规范(04621)	26.00
28		路	JTG D50—2006	公路沥青路面设计规范(06248)	36.00
29		μи	JTJ 018—96	公路排水设计规范(0147)	12.00
30			JTJ/T 019—98		12.00
31			JTG D60—2004	公路土工合成材料应用技术规范(0218) 公路桥涵设计通用规范(05068)	24.00
					28.00
32			JTG/T D60-01—2004	公路桥梁抗风设计规范(0814)	28.00
33	271.		JTG/T D65-01—2007	公路斜拉桥设计细则(1125)	
34	设		JTG D61—2005	公路圬工桥涵设计规范(0887)	19.00 48.00
35		桥	JTG D62—2004		
36		隧	JTG D63—2007	公路桥涵地基与基础设计规范(06892)	48. 00 16. 00
37	计	M2	JTJ 025—86	公路桥涵钢结构及木结构设计规范(0176)	
38			JTG/T D65-04—2007	公路涵洞设计细则(06628)	26.00
39			JTG D70—2004	公路隧道设计规范(05180)	50.00
40			JTJ 026. 1—1999	公路隧道通风照明设计规范(0397)	16.00
41			JTG/T D71—2004	公路隧道交通工程设计规范(0810)	26.00
42			JTG D80—2006	高速公路交通工程及沿线设施设计通用规范(0998)	25.00
43		交	JTG D81—2006	公路交通安全设施设计规范(0977)	25.00
44		通	JTG/T D81—2006	公路交通安全设施设计细则(0997)	35.00
45			JTG/T D82—2009	公路交通标志和标线设置规范(07947)	116.00
46		综	交公路发[2007]358号	公路工程基本建设项目设计文件编制办法(06746)	26.00
47	1	合	交公路发[2007]358 号	公路工程基本建设项目设计文件图表示例(06770)	600.00

					决工 化
序号	类	别	编号	书名(书号)	定价(元)
48			JTG E40—2007	公路土工试验规程(06794)	79.00
49			JTJ 052—2000	公路工程沥青及沥青混合料试验规程(0429)	40.00
50			JTG E30—2005	公路工程水泥及水泥混凝土试验规程(0830)	32.00
51			JTG E41—2005	公路工程岩石试验规程(0828)	18.00
52	检测		JTJ 05684	公路工程水质分析操作规程(02971)	8.00
_53		-	JTG E42—2005	公路工程集料试验规程(0829)	30.00
54		-	JTG E50—2006	公路工程土工合成材料试验规程(0982)	28.00
55	İ	-	JTG E51—2009	公路工程无机结合料稳定材料试验规程(08046)	48.00
56			JTG E60—2008	公路路基路面现场测试规程(07296)	38.00
57		-	JTG F10-2006	公路路基施工技术规范(06221)	40.00
58		-	JTJ 034—2000	公路路面基层施工技术规范(0431)	20.00
59		公	JTG F30—2003	公路水泥混凝土路面施工技术规范(04622)	46.00
60		路	JTJ 037.1—2000	公路水泥混凝土路面滑模施工技术规程(0425)	16.00
61	施		JTG F40—2004	公路沥青路面施工技术规范(05328)	38.00
62			JTG F41—2008	公路沥青路面再生技术规范(07105)	25.00
63	ェ		JTJ 041—2000	公路桥涵施工技术规范(03770)	52.00
64		桥	JTG/T F81-01—2004	公路工程基桩动测技术规程(0783)	20.00
65		隧	JTG F60—2009	公路隧道施工技术规范(07992)	42.00
_66			JTG/T F60—2009	公路隧道施工技术细则(07991)	58.00
67		交	JTG F71—2006	公路交通安全设施施工技术规范(0976)	20.00
68		通	JTG/T F83-01—2004	高速公路护栏安全性能评价标准(0809)	15.00
69			JTG F80/1—2004	公路工程质量检验评定标准 第一册 (土建工程)(05327)	46.00
70	质	检	JTG F80/2—2004	公路工程质量检验评定标准 第二册 (机电工程)(05325)	26.00
71	安	全	JTG G10—2006	公路工程施工监理规范(06267)	20.00
72	1	Ī	JTJ 076—95	公路工程施工安全技术规程(0049)	12.00
73			JTG H10—2009	公路养护技术规范(08071)	49.00
74		Ì	JTJ 073.1—2001	公路水泥混凝土路面养护技术规范(0520)	12.00
75		İ	JTJ 073.2—2001	公路沥青路面养护技术规范(0551)	13.00
76	养	护	JTG H11—2004	公路桥涵养护规范(05025)	30.00
77	管	理	JTG H12—2003	公路隧道养护技术规范(0695)	26.00
78		-	JTG H20—2007	-	15.00
	-	ŀ		公路技术状况评定标准(1140)	
79			JTG H30—2004	公路养护安全作业规程(05154)	36.00
80	加固		JTG/T J22—2008	公路桥梁加固设计规范(07380)	52.00
81	与所	包工	JTG/T J23—2008	公路桥梁加固施工技术规范(07378)	30.00
1	_		中建标公路[2002]1号	公路沥青玛蹄脂碎石路面技术指南(0634)	20.00
2			交公便字[2005]330号	公路机电系统维护技术指南(0922)	30.00
3		ļ	交公便字[2006]02 号	公路工程水泥混凝土外加剂与掺合料应用技术指南(0925)	50.00
4	技术		交公便字[2005]329号	微表处和稀浆封层技术指南(0920)	18.00
5			交公便字[2005]329号	公路冲击碾压应用技术指南(0921)	15.00
6			交公便字[2006]02 号	公路工程抗冻设计与施工技术指南(0926)	26.00
7			厅公路字[2006]418号	公路安全保障工程实施技术指南(1034)	40.00
- 8			交公便字[2006]02 号	公路土钉支护技术指南(0995)	22.00
9			交公便字[2006]274号	公路钢箱梁桥面铺装设计与施工技术指南(1008)	25.00
			交公便字[2006]243 号	盐渍土地区公路设计与施工指南(1006)	20.00
10	1				15.00
				植纸型까刀尾锯十杯菜1分1十吨 岩図(U831)	1,3.00
10 11 12			2008 年第 25 号公告	横张预应力混凝土桥梁设计施工指南(0831) 汶川地震灾后公路恢复重建技术指南(1246)	10.00

注:JTG——公路工程行业标准体系;JTG/T——公路工程行业推荐性标准体系;JTJ——仍在执行的公路工程原行业标准体系。

批发业务电话:010-59757969;零售业务电话:010-85285659(北京);网上书店电话:010-85285949;业务咨询电话:010-85285922。我社各地经销商联系方式见 www. ccpress. com. cn 网站首页。

9 ||787114|| 080463|| > 网上购书/www.jtbook.com.cn 定价:48.00 元